
Taming uPortal:
Managing Complexity, Multiple

Environments, & Upgrades

Drew Wills & Cris Holdorph
Jasig Conference Denver, May 22nd, 2011

© Copyright Unicon, Inc., 2006. This work is the intellectual property of Unicon, Inc. Permission is granted for this material to be shared for
non-commercial, educational purposes, provided that this copyright statement appears on the reproduced materials and notice is given that
the copying is by permission of Unicon, Inc. To disseminate otherwise or to republish requires written permission from Unicon, Inc.

Introductions
Please share a bit about yourself:

• Name & Institution

• Are you running uPortal? What version?

• When was the last time you upgraded the portal
framework?

• Are you running any Jasig portlets? Which ones?

• What portion of your time is spent working on the
portal?

Intended Audience

• You are...
– A Java developer, UX developer, system administrator, or

similar IT professional

– Responsible for implementing & maintaining a uPortal-
based campus portal (or could be soon)

• You want to...
– Keep up with the latest enhancements & bug fixes from

Jasig

– Skillfully manage separate local, dev, test, and production
environments, seamlessly migrating content & settings
between them

– Plan for the future, putting yourself in solid position to
implement major version upgrades when they arrive

Inspiration

• Drew Wills wrote an article of the same name
on the Jasig wiki

• Many of the recommendations are common;
the less common ones were developed in
conjunction with OHIO University & Oakland
University

• Feel free to bring additional questions to
Drew at this conference

Jasig Wiki Article

Monday Session

A fresh Look at Building & Deploying uPortal
– Drew Wills, Unicon

– Bruce Tong, OHIO University

• Monday May 23rd, 4:45 PM

• Covers the use of these techniques at OHIO
University

• Come if you want to review this material,
choose something else if you don't, tell a
colleague if you think s/he should hear it

1. What's the problem?

2. Managing Patch Releases

3. Aggregated Builds

4. Managing Multiple Portal
Environments

5. Larger Upgrades

What's the Problem?

Some factors that make
managing a portal challenging

Why It's Hard

• uPortal isn't a software package you simply
download and turn on

• For it to have any value, you have to make it
your own

• But the lines between what adopters should
customize and what Jasig should maintain &
enhance are still pretty fuzzy*

*Though the situation has improved quite a bit
in recent years

Business as Usual

• In reality, most uPortal adopters make some
important customizations in areas that are
genuinely likely to evolve, such as...
– structure or theme XSL
– application XML (CPDs, web flows, etc.)
– portlet markup
– JavaScript,
– Java Code
– or all of the above

• Maintaining these changes in the face of on-
going Jasig development is intimidating

Don't Stand Still

• But it's not a good idea simply to ignore the
work in Jasig

• There's a lot going on there

• Odds are good that there are fixes for bugs
you've experienced, and new features that
you've wished for in the past

• For example...

3.2.1 Release Notes – Mar 2010

3.2.2 Release Notes – Jul 2010

3.2.2 Release Notes – Jul 2010

3.2.2 Release Notes – Jul 2010

3.2.2 Release Notes – Jul 2010

3.2.3 Release Notes – Oct 2010

3.2.3 Release Notes – Oct 2010

3.2.4 Release Notes – Oct 2010

3.2.5 Release Notes – ???

3.2.5 Release Notes – ???

Does This Portlet Useful?

What About This One?

JIRA Summary 3.2.1 - 2011/05/01

So What Are You Saying?

• A single institution probably can't compete
with the pace of innovation in the project itself

• Even if it you could, why would you want to?

• Wouldn't it be better to benefit from both your
own efforts and the community contributions
continuously... at the same time?

• The practices in the next section are
designed to help you do just that

Managing Local Customizations

How do I make it OK that my source and
Jasig's source change independantly?

Keeping up with Jasig

• A well-designed relationship between your
source code and Jasig project code can make
all the difference applying incremental changes

• Consider these practices
– Vendor branching
– svn:externals

– Maven Overlays
– Do-It-Yourself (DIY) Overlays

• They can greatly simplify the process of pulling
in new code from Jasig

Vendor Branching

• Widely adopted practice for addressing this
class of problem

• Captures the difference between 2 versions of
3rd-party source code as a delta that can be
merged, automatically, with your customizations
and into your project

• Each new version of 3rd-party source is called a
vendor drop

Vendor Branching: SVN Example

• Add 3rd-party source to a special area called
vendor/

• Copy the vendor drop to a tag named for the
current version

Vendor Branching: SVN Example

• Copy the tag* to a location in your project and
check it out

• Make & commit local customizations to the
3rd-party source in your checkout

*or perhaps current/, if it seems clearer

Vendor Branching: SVN Example

• When a new version is available, replace the
contents of current/ with the latest sources

• Warning! This is a simple example – no files,
added, deleted, or moved

Vendor Branching: SVN Example

• Merge the difference between the old version
and the new version into your project

svn_load_dirs.pl

• Okay, but what happens with a real project?
• The previous example won't correctly handle...

– Added files
– Deleted files
– Moved files

• Subversion provides a perl script that can help
you manage these complexities

Vendor Branching Pros & Cons

• Pros:
– Blend changes from Jasig & local changes with

automated merge tools
– Industry-standard, well documented practice

• Cons:
– Not particularly easy or quick
– Must be done correctly from the beginning; make a

mistake at any point and you loose the advantage
– You still have to resolve conflicts by hand
– Local changes to files that move are lost
– svn_load_dirs.pl does not support properties

svn:externals

• Externals Definitions is an alternative to
vendor branching

• Compose a working copy from separate but
aggregated checkouts

• It even works across (SVN) repositories

• Allows you to develop on the real project and
commit patches directly!

.externals File

• Using an .externals file to track changes is a
popular convention

• It's easier to make changes to a text file

• You can view it in a web browser

• Be certain to specify a revision number for
each external item

svn:externals Setup

• Create the file first, then use svn propset -F

• Commit the property & the file at the same
time, atomically

• To change the version of an external
dependency, just edit the file and repeat the
process

svn:externals Checkout
• When you checkout your project, Subversion

automatically includes external directories where
you place them

• If you change the revision, Subversion automatically
changes the external directory on update

svn:externals & Local Customizations

• Unlike vendor branching, svn:externals will not
combine yor customizations with Jasig code
automatically

• Consider overlaying local customizations on
top of Jasig source

• We will look at 2 approaches:
– Maven Overlays

– DIY

Maven Overlays

• Feature of the Maven War Plugin

• Works with <packaging>war</packaging> projects

• Simple to set up: include another war as a
dependency of your war

Maven Overlays (cont.)

• Files in your project replace files of the same
name in the dependency

• You can also tweak overlay behavior
– e.g. include/exclude files specifically

DIY Overlays

• Just like Maven Overlays, but without
Maven's help (e.g. dependency management)

• Use a work/ directory to combine original
source files with your customizations

• Works with any type of project

Comparison Chart

Break

Aggregated Builds

Building the Portal & Portlets together

Built-In Build Capabilities

• uPortal provides a blended Ant/Maven build
system

• Jasig portlets typically provide a Maven-
based build system

Built-In Build Capabilities (cont.)

• Especially with uPortal, there's a lot of custom
logic & sophistication baked into the build
– Maven/Ant integration
– Database management
– Web server deployment
– Nested modules
– LICENSE and NOTICE plugins
– Unit tests and static analysis
– Pluto
– yuicompressor and resource-aggregator

Built-In Build Capabilities (cont.)

• These build-related settings and behaviors
change frequently

• When they do, they often don't make pretty
diffs

• So it usually doesn't pay to reinvent or fork
the build process

“Puppet Master” Build

• Although the inner-workings of the build
systems commonly change in confusing ways,
the way(s) you invoke them generally don't

• So you can safely aggregate the builds of
uPortal and related projects

• For this goal, I suggest Groovy
– Java-based syntax

– Platform-independent

“Puppet Master” Build Example

• Use the same installations of Ant and Maven
as building the projects directly

Build Arguments Example

• Turn portions of the build on or off using
additional arguments

• Saves considerable time in development

>groovy -Dbuild.clean.skip=true build.groovy

Maven Settings Example

• Remember to pass along Maven and/or Ant
flags that you might use

>groovy -Dmaven.test.skip=true build.groovy

uPortal Reset Example

• Reset the work/uPortal/ directory unless
overridden by the build.skip.clean flag (above)

Build uPortal Example

• Apply local customizations, build with Ant

Building Portlets Example

• Add portlets to the Puppet Master build

Maven Overlay Portlet Example

• No need to delete/copy files in a work/ directory

DIY Overlay Portlet Example

• “Brute force” portlet overlay example

Managing Multiple Portal
Environments

Maintaining distinct settings & data for
PROD, TEST, DEV, etc.

2 Important Techniques

This section covers two key areas for supporting
multiple environments on the same codebase:

• Configuration: using Maven filters to manage
separate databases, log settings, etc.

• Data: using Import/Export to manage common
data & environment-specific data, and to move
data around

Maven Filters

• Allows project files to contain values that will
be supplied at build time

• These values can come from several sources:
– The pom file (e.g. ${pom.version})

– The settings file (e.g. ${settings.localRepository})

– Pom <properties> (e.g. ${my.custom.value})

– -D parameters (e.g. mvn -Dfoo=bar install)

– A filters file

Filters Files

• Use Maven filters files to gather values for
filters into one file

• Use a different file for each environment!

• WARNING: Never filter binary files

Maven Filters in uPortal 4

UP-2813: Add hooks for Maven filters to uPortal
poms to support multi-environment builds

• Use build.properties itself as a filters file

• Or use build.${env}.properties for multiple
environments if you want to keep them in the
same place

• Or choose your own location by specifying the
filters.file property in build.properties

build.properties

build.${env}.properties

• You can optionally manage all your
build.properties files in the same location

• Name each one for its environment, e.g.:
– build.local.properties

– build.dev.properties

– build.test.properties

– build.prod.properties

• Invoke Ant for a named environment as follows:

>ant -Denv=dev clean initportal

build.xml

• Ant passes the location of your filters file to
Maven as -Denvironment.name

pom.xml

• Maven uses the environment.name parameter
to evaluate the location of the filters file*

• The default is build.properties

*An explicitly-specified filters.file property
overrides environment.name if present

uportal-war/pom.xml

• uportal-war filters resource files with the
specified filters.file

rdbm.properties

• Use filter expressions to set database
connection properties in uPortal 4

• This approach makes it easy to use different
settings for different environments

uPortal Import/Export
• Provides create/update/delete (CRUD) operations

on most portal entities
• Some things have changed since uPortal 3
• Imports are backwards-compatible to 2.5
• uPortal 4 Supports the following entities:

 Entity Types
 Structures
 Themes
 Users (template/normal)
 Groups
 GroupMemberships (hybrid)
 Portlet Types

 Portlets
 Memberships
 Permissions
 Permission Owners
 Permission Sets
 Profiles
 Layouts (template/normal)
 DLM Fragment Definitions

File Types
• Import/Export uses the following file extensions:

 .entity-type
 .stylesheet-descriptor.xml
 .template-user
 .user
 .group
 .group_membership
 .portlet-type
 .portlet.xml
 .membership

 .permission
 .permission_owner
 .permission_set
 .profile
 .fragment-layout
 .layout
 .fragment-definition
 .batch

• Portal entities are imported in this sequence to deal
with dependencies

Example: guest-lo.fragment-layout

Example: student.user

Using Import/Export

• Ant tasks:
– crn-export: Creates XML representations of the specified

object(s)
– crn-import: Modifies the database to match the specified

XML document(s)
– crn-delete: Removes the specified object(s) from the

database

>ant crn-export -Ddir=mylayouts -Dtype=all-layouts

uPortal Manual Documentation

• Check the uPortal Manual for a comprehensive list
of supported types and usage notes

https://wiki.jasig.org/display/UPM32/Import+Export+Data+Migration+Tools

ImportExport Portlet

• Provides access to uPortal Import/Export
capabilities from the portal UI

• You can restrict allowable operations at
deploy/publish time with Portlet Preferences

ImportExport Portlet (cont.)

• Import Operations: any valid document

• Export Operations:
layout | portlet | portlet-type | group | user
| theme | structure | entity-type |
fragment-definition

• Delete Operations (use extreme caution):
entity-type | portlet | portlet-type | group |
layout | structure | theme user | fragment-
definition

entities.location

• You can change the location of entity files in
build.properties

• Advantages:
– You can replace your whole universe of data with

one property change
– You can use different data sets for different

environments
>ant initdb

– You can even do…
>ant initdb -Dentities.location=myDir

– You can maintain both your data and uPortal
sample data in Source Code Control

Hierarchical Data Directories

• Use a nested series of
directories named for each
environment

• Use entities.location in each
build.properties to match
environments with
directories

• Promote data from one
environment to another by
moving it down the chain

• WARNING: Doesn't work
with multiple versions of the
same entity

Larger Upgrades

Some notes on upgrades
bigger than patch releases

Vendor Branching

• It may be possible to use a vendor branch to
change minor releases (e.g. 3.1.x → 3.2.x)

• It won't be possible to use a vendor branch
to change major releases (e.g. 3.x → 4.x)

• Files tend to move and/or evolve in major and
minor releases

• If you choose vendor branching, consider
creating a new one in either case

Configuration & Customization

• Catalog local changes to the portal

• The fewer there are, the more feasible it will be
to upgrade

• Re-apply configuration manually – files move
and names of settings change between versions

• Often feature enhancements & bug fixes need
not be re-applied because they've been added to
the project itself (though not always in identical
form)

Theme & Skin

• Much of the coolness of uP3 and uP4 is
baked-into the Universality theme

• So it's best not to try porting an earlier theme
or skin to a later version of the portal

• This is another area for a do-over

Data Migration

• Database schema changes can & do happen with
both major and minor releases (but not patch)

• That means you can't use an earlier database
with a more recent version of the portal

• Thankfully there is a simple, 3-step procedure...

Three Step Procedure

The Real Three Step Procedure

1.Export your existing data

2.Make appropriate modifications*

3. Import your data to the new portal database

*In other words, '?'

1. Export
• Consider specifying an included_users_file in

export.properties

• Allows you to exclude data for non-listed users
pertaining to:
– user accounts

– layouts

– group memberships

– permissions

• Fragment owners are included anyway, even if they
aren't listed

• Useful as a “reset” button if your fragments & portlets
are changing dramatically

2. Make Appropriate Changes

• Sometimes the example uPortal data makes a
change you want to make as well

• Sometimes moving to a new framework
version means you want to do something
differently

• You may also want to clean up data that is no
longer relevant

• This process is somewhat subjective, and
different for everyone

3. Import

• Use import.properties to make the following
changes across all users, if desired:
– Structure

– Theme

– Template User

Final Thoughts

• Do a few test runs – review the results and
refine Step #2

• Consider scripting Step #2 if you need to
preserve up-to-the-minute data changes

• If desired, you can migrate one node at a time
for zero downtime

• An upgrade is a great time to clean house –
consider contributing your bug fixes &
innovations!

Cris Holdorph
holdorph@unicon.net

Drew Wills
drew@unicon.net

Questions?

mailto:holdorph@unicon.net

	Presentation Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Section One Title
	Slide 9
	General Guidelines
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Section Two Title
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Questions?

