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Introductions
Please share a bit about yourself:

• Name & Institution

• Are you running uPortal?  What version?

• When was the last time you upgraded the portal 
framework?

• Are you running any Jasig portlets?  Which ones?

• What portion of your time is spent working on the 
portal?



Intended Audience

• You are...
– A Java developer, UX developer, system administrator, or 

similar IT professional

– Responsible for implementing & maintaining a uPortal-
based campus portal (or could be soon)

• You want to...
– Keep up with the latest enhancements & bug fixes from 

Jasig

– Skillfully manage separate local, dev, test, and production 
environments, seamlessly migrating content & settings 
between them

– Plan for the future, putting yourself in solid position to 
implement major version upgrades when they arrive



Inspiration

• Drew Wills wrote an article of the same name 
on the Jasig wiki

• Many of the recommendations are common;  
the less common ones were developed in 
conjunction with OHIO University & Oakland 
University

• Feel free to bring additional questions to 
Drew at this conference



Jasig Wiki Article



Monday Session

A fresh Look at Building & Deploying uPortal
– Drew Wills, Unicon

– Bruce Tong, OHIO University

• Monday May 23rd, 4:45 PM

• Covers the use of these techniques at OHIO 
University

• Come if you want to review this material, 
choose something else if you don't, tell a 
colleague if you think s/he should hear it



1. What's the problem?

2. Managing Patch Releases

3. Aggregated Builds

4. Managing Multiple Portal 
Environments

5. Larger Upgrades



What's the Problem?

Some factors that make 
managing a portal challenging



Why It's Hard

• uPortal isn't a software package you simply 
download and turn on

• For it to have any value, you have to make it 
your own

• But the lines between what adopters should 
customize and what Jasig should maintain & 
enhance are still pretty fuzzy*

*Though the situation has improved quite a bit 
in recent years



Business as Usual

• In reality, most uPortal adopters make some 
important customizations in areas that are 
genuinely likely to evolve, such as...
– structure or theme XSL
– application XML (CPDs, web flows, etc.)
– portlet markup
– JavaScript, 
– Java Code 
– or all of the above

• Maintaining these changes in the face of on-
going Jasig development is intimidating



Don't Stand Still

• But it's not a good idea simply to ignore the 
work in Jasig

• There's a lot going on there

• Odds are good that there are fixes for bugs 
you've experienced, and new features that 
you've wished for in the past

• For example...



3.2.1 Release Notes – Mar 2010



3.2.2 Release Notes – Jul 2010



3.2.2 Release Notes – Jul 2010



3.2.2 Release Notes – Jul 2010



3.2.2 Release Notes – Jul 2010



3.2.3 Release Notes – Oct 2010



3.2.3 Release Notes – Oct 2010



3.2.4 Release Notes – Oct 2010



3.2.5 Release Notes – ???



3.2.5 Release Notes – ???



Does This Portlet Useful?



What About This One?



JIRA Summary 3.2.1 - 2011/05/01



So What Are You Saying?

• A single institution probably can't compete 
with the pace of innovation in the project itself

• Even if it you could, why would you want to?

• Wouldn't it be better to benefit from both your 
own efforts and the community contributions 
continuously... at the same time?

• The practices in the next section are 
designed to help you do just that



Managing Local Customizations

How do I make it OK that my source and 
Jasig's source change independantly?



Keeping up with Jasig

• A well-designed relationship between your 
source code and Jasig project code can make 
all the difference applying incremental changes

• Consider these practices
– Vendor branching
– svn:externals

– Maven Overlays
– Do-It-Yourself (DIY) Overlays

• They can greatly simplify the process of pulling 
in new code from Jasig



Vendor Branching

• Widely adopted practice for addressing this 
class of problem

• Captures the difference between 2 versions of 
3rd-party source code as a delta that can be 
merged, automatically, with your customizations 
and into your project

• Each new version of 3rd-party source is called a 
vendor drop



Vendor Branching:  SVN Example

• Add 3rd-party source to a special area called 
vendor/

• Copy the vendor drop to a tag named for the 
current version



Vendor Branching:  SVN Example

• Copy the tag* to a location in your project and 
check it out

• Make & commit local customizations to the 
3rd-party source in your checkout

*or perhaps current/, if it seems clearer



Vendor Branching:  SVN Example

• When a new version is available, replace the 
contents of current/ with the latest sources

• Warning!  This is a simple example – no files, 
added, deleted, or moved



Vendor Branching:  SVN Example

• Merge the difference between the old version 
and the new version into your project



svn_load_dirs.pl

• Okay, but what happens with a real project?
• The previous example won't correctly handle...

– Added files
– Deleted files
– Moved files

• Subversion provides a perl script that can help 
you manage these complexities



Vendor Branching Pros & Cons

• Pros:
– Blend changes from Jasig & local changes with 

automated merge tools
– Industry-standard, well documented practice

• Cons:
– Not particularly easy or quick
– Must be done correctly from the beginning;  make a 

mistake at any point and you loose the advantage
– You still have to resolve conflicts by hand
– Local changes to files that move are lost
– svn_load_dirs.pl does not support properties



svn:externals

• Externals Definitions is an alternative to 
vendor branching

• Compose a working copy from separate but 
aggregated checkouts

• It even works across (SVN) repositories

• Allows you to develop on the real project and 
commit patches directly!



.externals File

• Using an .externals file to track changes is a 
popular convention

• It's easier to make changes to a text file

• You can view it in a web browser

• Be certain to specify a revision number for 
each external item



svn:externals Setup

• Create the file first, then use svn propset -F

• Commit the property & the file at the same 
time, atomically

• To change the version of an external 
dependency, just edit the file and repeat the 
process



svn:externals Checkout
• When you checkout your project, Subversion 

automatically includes external directories where 
you place them

• If you change the revision, Subversion automatically 
changes the external directory on update



svn:externals & Local Customizations

• Unlike vendor branching, svn:externals will not 
combine yor customizations with Jasig code 
automatically

• Consider overlaying local customizations on 
top of Jasig source

• We will look at 2 approaches:
– Maven Overlays

– DIY



Maven Overlays

• Feature of the Maven War Plugin

• Works with <packaging>war</packaging> projects

• Simple to set up:  include another war as a 
dependency of your war



Maven Overlays (cont.)

• Files in your project replace files of the same 
name in the dependency

• You can also tweak overlay behavior
– e.g. include/exclude files specifically



DIY Overlays

• Just like Maven Overlays, but without 
Maven's help (e.g. dependency management)

• Use a work/ directory to combine original 
source files with your customizations

• Works with any type of project



Comparison Chart



Break



Aggregated Builds

Building the Portal & Portlets together



Built-In Build Capabilities

• uPortal provides a blended Ant/Maven build 
system

• Jasig portlets typically provide a Maven-
based build system



Built-In Build Capabilities (cont.)

• Especially with uPortal, there's a lot of custom 
logic & sophistication baked into the build
– Maven/Ant integration
– Database management
– Web server deployment
– Nested modules
– LICENSE and NOTICE plugins
– Unit tests and static analysis
– Pluto
– yuicompressor and resource-aggregator



Built-In Build Capabilities (cont.)

• These build-related settings and behaviors 
change frequently

• When they do, they often don't make pretty 
diffs

• So it usually doesn't pay to reinvent or fork 
the build process



“Puppet Master” Build

• Although the inner-workings of the build 
systems commonly change in confusing ways, 
the way(s) you invoke them generally don't

• So you can safely aggregate the builds of 
uPortal and related projects

• For this goal, I suggest Groovy
– Java-based syntax

– Platform-independent  



“Puppet Master” Build Example

• Use the same installations of Ant and Maven 
as building the projects directly



Build Arguments Example

• Turn portions of the build on or off using 
additional arguments

• Saves considerable time in development

>groovy -Dbuild.clean.skip=true build.groovy



Maven Settings Example

• Remember to pass along Maven and/or Ant 
flags that you might use

>groovy -Dmaven.test.skip=true build.groovy



uPortal Reset Example

• Reset the work/uPortal/ directory unless 
overridden by the build.skip.clean flag (above)



Build uPortal Example

• Apply local customizations, build with Ant



Building Portlets Example

• Add portlets to the Puppet Master build



Maven Overlay Portlet Example

• No need to delete/copy files in a work/ directory



DIY Overlay Portlet Example

• “Brute force” portlet overlay example



Managing Multiple Portal 
Environments

Maintaining distinct settings & data for 
PROD, TEST, DEV, etc.



2 Important Techniques

This section covers two key areas for supporting 
multiple environments on the same codebase:

• Configuration:  using Maven filters to manage 
separate databases, log settings, etc.

• Data:  using Import/Export to manage common 
data & environment-specific data, and to move 
data around



Maven Filters

• Allows project files to contain values that will 
be supplied at build time

• These values can come from several sources:
– The pom file (e.g. ${pom.version})

– The settings file (e.g. ${settings.localRepository})

– Pom <properties> (e.g. ${my.custom.value})

– -D parameters (e.g. mvn -Dfoo=bar install)

– A filters file



Filters Files

• Use Maven filters files to gather values for 
filters into one file

• Use a different file for each environment!

• WARNING:  Never filter binary files



Maven Filters in uPortal 4

UP-2813:  Add hooks for Maven filters to uPortal 
poms to support multi-environment builds

• Use build.properties itself as a filters file

• Or use build.${env}.properties for multiple 
environments if you want to keep them in the 
same place 

• Or choose your own location by specifying the 
filters.file property in build.properties



build.properties



build.${env}.properties

• You can optionally manage all your 
build.properties files in the same location

• Name each one for its environment, e.g.:
– build.local.properties

– build.dev.properties

– build.test.properties

– build.prod.properties

• Invoke Ant for a named environment as follows:

>ant -Denv=dev clean initportal



build.xml

• Ant passes the location of your filters file to 
Maven as -Denvironment.name



pom.xml

• Maven uses the environment.name parameter 
to evaluate the location of the filters file*

• The default is build.properties

*An explicitly-specified filters.file property 
overrides environment.name if present



uportal-war/pom.xml

• uportal-war filters resource files with the 
specified filters.file



rdbm.properties

• Use filter expressions to set database 
connection properties in uPortal 4

• This approach makes it easy to use different 
settings for different environments



uPortal Import/Export
• Provides create/update/delete (CRUD) operations 

on most portal entities
• Some things have changed since uPortal 3
• Imports are backwards-compatible to 2.5
• uPortal 4 Supports the following entities:

  Entity Types
  Structures
  Themes
  Users (template/normal)
  Groups
  GroupMemberships (hybrid)
  Portlet Types

  Portlets
  Memberships
  Permissions
  Permission Owners
  Permission Sets
  Profiles
  Layouts (template/normal)
  DLM Fragment Definitions



File Types
• Import/Export uses the following file extensions:

  .entity-type
  .stylesheet-descriptor.xml
  .template-user
  .user
  .group
  .group_membership
  .portlet-type
  .portlet.xml
  .membership

  .permission
  .permission_owner
  .permission_set
  .profile
  .fragment-layout
  .layout
  .fragment-definition
  .batch

• Portal entities are imported in this sequence to deal 
with dependencies



Example:  guest-lo.fragment-layout



Example:  student.user



Using Import/Export

• Ant tasks:
– crn-export:  Creates XML representations of the specified 

object(s)
– crn-import:  Modifies the database to match the specified 

XML document(s)
– crn-delete:  Removes the specified object(s) from the 

database

>ant crn-export -Ddir=mylayouts -Dtype=all-layouts



uPortal Manual Documentation

• Check the uPortal Manual for a comprehensive list 
of supported types and usage notes

https://wiki.jasig.org/display/UPM32/Import+Export+Data+Migration+Tools



ImportExport Portlet

• Provides access to uPortal Import/Export 
capabilities from the portal UI

• You can restrict allowable operations at 
deploy/publish time with Portlet Preferences



ImportExport Portlet (cont.)

• Import Operations:  any valid document

• Export Operations:
layout | portlet | portlet-type | group | user 
| theme | structure | entity-type | 
fragment-definition

• Delete Operations (use extreme caution):
entity-type | portlet | portlet-type | group | 
layout | structure | theme user | fragment-
definition



entities.location

• You can change the location of entity files in 
build.properties

• Advantages:
– You can replace your whole universe of data with 

one property change 
– You can use different data sets for different 

environments
>ant initdb

– You can even do…
>ant initdb -Dentities.location=myDir

– You can maintain both your data and uPortal 
sample data in Source Code Control



Hierarchical Data Directories

• Use a nested series of 
directories named for each 
environment

• Use entities.location in each 
build.properties to match 
environments with 
directories

• Promote data from one 
environment to another by 
moving it down the chain

• WARNING: Doesn't work 
with multiple versions of the 
same entity



Larger Upgrades

Some notes on upgrades 
bigger than patch releases



Vendor Branching

• It may be possible to use a vendor branch to 
change minor releases (e.g. 3.1.x → 3.2.x)

• It won't be possible to use a vendor branch 
to change major releases (e.g. 3.x → 4.x)

• Files tend to move and/or evolve in major and 
minor releases

• If you choose vendor branching, consider 
creating a new one in either case



Configuration & Customization

• Catalog local changes to the portal

• The fewer there are, the more feasible it will be 
to upgrade

• Re-apply configuration manually – files move 
and names of settings change between versions

• Often feature enhancements & bug fixes need 
not be re-applied because they've been added to 
the project itself (though not always in identical 
form)



Theme & Skin

• Much of the coolness of uP3 and uP4 is 
baked-into the Universality theme

• So it's best not to try porting an earlier theme 
or skin to a later version of the portal

• This is another area for a do-over



Data Migration

• Database schema changes can & do happen with 
both major and minor releases (but not patch)

• That means you can't use an earlier database 
with a more recent version of the portal

• Thankfully there is a simple, 3-step procedure...



Three Step Procedure



The Real Three Step Procedure

1.Export your existing data

2.Make appropriate modifications*

3. Import your data to the new portal database

*In other words, '?'



1. Export
• Consider specifying an included_users_file in 

export.properties 

• Allows you to exclude data for non-listed users 
pertaining to:
– user accounts

– layouts

– group memberships

– permissions

• Fragment owners are included anyway, even if they 
aren't listed

• Useful as a “reset” button if your fragments & portlets 
are changing dramatically



2. Make Appropriate Changes

• Sometimes the example uPortal data makes a 
change you want to make as well

• Sometimes moving to a new framework 
version means you want to do something 
differently

• You may also want to clean up data that is no 
longer relevant

• This process is somewhat subjective, and 
different for everyone



3. Import

• Use import.properties to make the following 
changes across all users, if desired:
– Structure

– Theme

– Template User



Final Thoughts

• Do a few test runs – review the results and 
refine Step #2

• Consider scripting Step #2 if you need to 
preserve up-to-the-minute data changes

• If desired, you can migrate one node at a time 
for zero downtime

• An upgrade is a great time to clean house – 
consider contributing your bug fixes & 
innovations!



Cris Holdorph
holdorph@unicon.net

Drew Wills
drew@unicon.net

Questions?

mailto:holdorph@unicon.net
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