
A Fresh Look at Building
& Deploying uPortal

Bruce Tong & Drew Wills
Jasig Conference Denver, May 23, 2011

© Copyright Unicon, Inc., 2006. This work is the intellectual property of Unicon, Inc. Permission is granted for this material to be shared for
non-commercial, educational purposes, provided that this copyright statement appears on the reproduced materials and notice is given that
the copying is by permission of Unicon, Inc. To disseminate otherwise or to republish requires written permission from Unicon, Inc.

My OHIO Portal

• OHIO University
– Main campus in Athens, Ohio
– ~20k students
– ~2.2k faculty
– ~3.5k staff

• My OHIO Portal
– Work began in May, 2010
– Based on uPortal 3.2.4 + a few recent patches
– Applicants & students: Fall, 2010
– Faculty, staff, others: light content

1. svn:externals + Overlay

2. “Puppet Master” Build Script

3. Maven Filters

4. RPMs

svn:externals + Overlay

How do I handle the fact that our source &
Jasig project code change independently?

Keeping Up With The Joneses

• A lot of energy goes into uPortal & Jasig
portlets, contributed by leading schools and
talented professionals

• One individual – even a small team – can't
compete with the pace of innovation

• Even if you could, why would you want to?

• Wouldn't it be better to benefit both from your
own efforts and community contributions
continuously... at the same time?

JIRA Summary 3.2.1 - 2011/05/01

Coordinated Practices

• OHIO University is not interested in duplicating
that work (though they want to have it!)

• Nor does it particularly want to spend cycles
cutting & applying patches, resolving conflicts,
tracking down files that moved, etc.

• We've adopted a coordinated set of practices
that make integrating the ongoing work from
Jasig with the ongoing work at OHIO both
simple and quick

More Than One Way

• We don't have a monopoly on good ideas

• The practices we use aren't the only good
ones out there

• What works for us may not be perfect for you

• In particular, consider Vendor Branching
– Popular, well-documented industry practice

– Leverages diff tools to reconcile your changes with
Jasig's automatically, where possible

svn:externals

• We use Externals Definitions to pull in Jasig
source code

• This feature allows you to compose a working
copy from separate, aggregated checkouts

• It even works across (SVN) repositories!

• Allows you to develop on the original project
and commit patches directly!

• Which is a key tactic we use to keep local
customizations to a minimum

.externals File

• Using an .externals (text) file to track changes
is a popular convention

• It's easier to make changes to a file

• You can view it in a web browser

• Always be certain to specify a revision
number for each external item

svn:externals Setup

• Create the file first, then use svn propset -F

• Commit the property & the file at the same
time, atomically

• To change the version of an external
dependency, just edit the file & repeat the
process

svn:externals Checkout
• When you checkout your project, Subversion

automatically includes external directories where
you place them

• If you change the revision, Subversion automatically
changes the external directory on update

Changes to .externals @ OHIO

• svn:exterlas for Jasig projects have been
updated 104 times since April 2010

svn:externals & Local Changes

• svn:externals does not support keeping your
config, skinning, and local customizations
together with Jasig source code

• (FYI, Vendor Branching does do this)

• Consider overlaying local customizations on
top of Jasig source

Do-It-Yourself Overlays

• We use a work/ directory to combine original
source files with OHIO customizations

• Works with any type of project and build system

• Consider also Maven Overlays, which work with
Maven <packaging>war</packaging> projects

“Puppet Master” Build Script

Managing the overlay process,
aggregating portal & portlet builds

“Puppet Master” Build

• The inner-workings of uPortal & Jasig portlet
build systems sometimes change in confusing
ways

• But the way(s) you invoke them generally don't

• So you can safely aggregate the builds of
uPortal and related projects

• For this purpose, we use Groovy
– Java-based syntax

– Platform-independent

Ant & Maven

• Use the same installations of Ant & Maven as
building from the command line

Build Parameters

• Make the default behavior “build everything
from scratch”

• But allow users to skip parts of the process by
passing special parameters

Reset the Portal Build

Overlay & Build the Portal

Put Portlet Builds in a Map of Closures

Invoke Portlet Deployer(s)

• Choose a portlet with -Dbuild.target.portlet or
build them all

Maven Filters

Manage different config & data for
different environments

Maven Filters

• Allows project files to contain values that will
be supplied at build time

• These values can come from several sources:
– The pom file (e.g. ${pom.version})

– The settings file (e.g. ${settings.localRepository})

– Pom <properties> (e.g. ${my.custom.value})

– -D parameters (e.g. mvn -Dfoo=bar install)

– A filters file

Filters Files

• Use Maven filters files to gather values for
filters into one file

• Use a different file for each environment!

• WARNING: Never filter binary files

local.properties

Maven Filters in uPortal 3.2
• We set up filtering in uPortal & Jasig portlet

pom.xml files to insert these values in the
appropriate places

• But (especially in uPortal) there's a lot of custom
logic & sophistication baked in the build...
– Web server deployment

– Unit tests & static analysis

– Pluto-fication

– yuicompressor & resource-aggregator

• So it's not much fun to maintain local deltas to build
files

• But thankfully...

Maven Filters in uPortal 4

UP-2813: Add hooks for Maven filters to uPortal
poms to support multi-environment builds

• Use build.properties itself as a filters file

• Or use build.${env}.properties for multiple
environments if you want to keep them in the
same place

• Or choose your own location by specifying the
filters.file property in build.properties

RPMs

Bundling uPortal & portlets for
RedHat Linux

RPMs

• Evolution of Software Deployments
– Manual → Scripted → Packaged → Automated

• Repeatable in all Environments
– Dev → Test → QA → Prod

• Auditor Friendly
– Allows Separation of Engineering and Operations

• ITIL Friendly
– Clean Separation of Release and Change Mgmt

RPM Contents

• Software
– uPortal and Portlet WARs

• System Files
– Service Initialization Scripts

– Configuration Files (logrotate, cron, etc...)

• RPM Specification
– File List

– Deployment Event Scripts, if needed

RPM Commands

• Install
– rpm -i uportal-prod-2011-05-13-14:20:05.rpm

• Update
– rpm -U uportal-prod-2011-05-15-09:55:35.rpm

• Remove
– rpm -e uportal-prod

• Query
– Version, File List, MD5 Checksums, more...

Bruce Tong
tongb@ohio.edu

Drew Wills
drew@unicon.net

Questions?

	Presentation Title
	Slide 2
	Slide 3
	Section One Title
	General Guidelines
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Section Two Title
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Questions?

