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My OHIO Portal

• OHIO University
– Main campus in Athens, Ohio
– ~20k students
– ~2.2k faculty
– ~3.5k staff

• My OHIO Portal
– Work began in May, 2010
– Based on uPortal 3.2.4 + a few recent patches
– Applicants & students:  Fall, 2010
– Faculty, staff, others:  light content



1. svn:externals + Overlay

2. “Puppet Master” Build Script

3. Maven Filters

4. RPMs



svn:externals + Overlay

How do I handle the fact that our source & 
Jasig project code change independently?



Keeping Up With The Joneses

• A lot of energy goes into uPortal & Jasig 
portlets, contributed by leading schools and 
talented professionals

• One individual – even a small team – can't 
compete with the pace of innovation

• Even if you could, why would you want to?

• Wouldn't it be better to benefit both from your 
own efforts and community contributions 
continuously... at the same time?
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Coordinated Practices

• OHIO University is not interested in duplicating 
that work (though they want to have it!)

• Nor does it particularly want to spend cycles 
cutting & applying patches, resolving conflicts, 
tracking down files that moved, etc.

• We've adopted a coordinated set of practices 
that make integrating the ongoing work from 
Jasig with the ongoing work at OHIO both 
simple and quick



More Than One Way

• We don't have a monopoly on good ideas

• The practices we use aren't the only good 
ones out there

• What works for us may not be perfect for you

• In particular, consider Vendor Branching
– Popular, well-documented industry practice

– Leverages diff tools to reconcile your changes with 
Jasig's automatically, where possible



svn:externals

• We use Externals Definitions to pull in Jasig 
source code

• This feature allows you to compose a working 
copy from separate, aggregated checkouts

• It even works across (SVN) repositories!

• Allows you to develop on the original project 
and commit patches directly!

• Which is a key tactic we use to keep local 
customizations to a minimum



.externals File

• Using an .externals (text) file to track changes 
is a popular convention

• It's easier to make changes to a file

• You can view it in a web browser

• Always be certain to specify a revision 
number for each external item



svn:externals Setup

• Create the file first, then use svn propset -F

• Commit the property & the file at the same 
time, atomically

• To change the version of an external 
dependency, just edit the file & repeat the 
process



svn:externals Checkout
• When you checkout your project, Subversion 

automatically includes external directories where 
you place them

• If you change the revision, Subversion automatically 
changes the external directory on update



Changes to .externals @ OHIO

• svn:exterlas for Jasig projects have been 
updated 104 times since April 2010



svn:externals & Local Changes

• svn:externals does not support keeping your 
config, skinning, and local customizations 
together with Jasig source code

• (FYI, Vendor Branching does do this)

• Consider overlaying local customizations on 
top of Jasig source



Do-It-Yourself Overlays

• We use a work/ directory to combine original 
source files with OHIO customizations

• Works with any type of project and build system

• Consider also Maven Overlays, which work with 
Maven <packaging>war</packaging> projects



“Puppet Master” Build Script

Managing the overlay process, 
aggregating portal & portlet builds



“Puppet Master” Build

• The inner-workings of uPortal & Jasig portlet 
build systems sometimes change in confusing 
ways

• But the way(s) you invoke them generally don't

• So you can safely aggregate the builds of 
uPortal and related projects

• For this purpose, we use Groovy
– Java-based syntax

– Platform-independent  



Ant & Maven

• Use the same installations of Ant & Maven as 
building from the command line



Build Parameters

• Make the default behavior “build everything 
from scratch”

• But allow users to skip parts of the process by 
passing special parameters



Reset the Portal Build



Overlay & Build the Portal



Put Portlet Builds in a Map of Closures



Invoke Portlet Deployer(s)

• Choose a portlet with -Dbuild.target.portlet or 
build them all



Maven Filters

Manage different config & data for 
different environments



Maven Filters

• Allows project files to contain values that will 
be supplied at build time

• These values can come from several sources:
– The pom file (e.g. ${pom.version})

– The settings file (e.g. ${settings.localRepository})

– Pom <properties> (e.g. ${my.custom.value})

– -D parameters (e.g. mvn -Dfoo=bar install)

– A filters file



Filters Files

• Use Maven filters files to gather values for 
filters into one file

• Use a different file for each environment!

• WARNING:  Never filter binary files



local.properties



Maven Filters in uPortal 3.2
• We set up filtering in uPortal & Jasig portlet 

pom.xml files to insert these values in the 
appropriate places

• But (especially in uPortal) there's a lot of custom 
logic & sophistication baked in the build...
– Web server deployment

– Unit tests & static analysis

– Pluto-fication

– yuicompressor & resource-aggregator

• So it's not much fun to maintain local deltas to build 
files

• But thankfully...



Maven Filters in uPortal 4

UP-2813:  Add hooks for Maven filters to uPortal 
poms to support multi-environment builds

• Use build.properties itself as a filters file

• Or use build.${env}.properties for multiple 
environments if you want to keep them in the 
same place 

• Or choose your own location by specifying the 
filters.file property in build.properties



RPMs

Bundling uPortal & portlets for 
RedHat Linux



RPMs

• Evolution of Software Deployments
– Manual → Scripted → Packaged → Automated

• Repeatable in all Environments
– Dev → Test → QA → Prod

• Auditor Friendly
– Allows Separation of Engineering and Operations

• ITIL Friendly
– Clean Separation of Release and Change Mgmt



RPM Contents

• Software
– uPortal and Portlet WARs

• System Files
– Service Initialization Scripts

– Configuration Files (logrotate, cron, etc...)

• RPM Specification
– File List

– Deployment Event Scripts, if needed



RPM Commands

• Install
– rpm -i uportal-prod-2011-05-13-14:20:05.rpm

• Update
– rpm -U uportal-prod-2011-05-15-09:55:35.rpm

• Remove
– rpm -e uportal-prod

• Query
– Version, File List, MD5 Checksums, more...



Bruce Tong
tongb@ohio.edu

Drew Wills
drew@unicon.net

Questions?
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