| Zuali.

rice

software development simpli ed

RAD, Rules, and Compatibility: What's Coming in
Kuali Rice 2.0

Eric Westfall - Indiana University

JASIG 2011

For those who don’t know...

e Kuali Rice consists of multiple sub-projects
which provide:

— Middleware Services
— Application Development Framework

* These different pieces are integrated into a
cohesive software stack

* This provides a common “platform” for
Enterprise application development and
Integration

(e

Kuali Rice Vision

* Support the needs of the Kuali Application
projects
— Kuali Financial System (KFS)
— Kuali Coeus (KC)
— Kuali Student (KS)
— Kuali Open Library Environment (OLE)

— Kuali People Management for the Enterprise
(KPME)

* Support the creation of non-Kuali projects
— Local projects at an institution or organization

(e

Kuali Rice Components

e Most recent release of Kuali Rice is 1.0.3.1

* Version 1.0.x
— KSB - Kuali Service Bus
— KIM - Kuali Identity Management
— KEW - Kuali Enterprise Workflow
— KEN - Kuali Enterprise Notification
— KNS - Kuali Nervous System

. Version 2.0.x — (Q3 2011)

— KRMS — Kuali Rule Management System
— KRAD — Kuali Rapid Application Development

Kuali Rice 2.0 Deliverables

 Modularity

— To more loosely decouple different components
* Version Compatibility

— Provide deployment and upgrade flexibility
e Kuali Rule Management System (KRMS)

— Business Rule Management

— Requirements for Kuali Coeus and Kuali Student
e Kuali Rapid Application Development (KRAD)

— “Modernize” the KNS
— Requirements for Kuali Student user experience

(e

Modularity

e Kuali Rice has a lot of dirent pieces

T S . - i |
RO la =

 Butin the past, components have not always been well
organized!

(o) R

Modularity — In the Past

* Level of coupling between components has
not been given as much attention as it
deserves

* Code base overly “monolithic”

* Difficult for a client of the software to
understand which apis and services they
should be using (as opposed to “internal”

ones)

(e

Modularity — Making it Better

* |In Rice 2.0:

— Working to separate out different conceptual
modules of Rice into multiple-maven modules
with our Maven-based build

— Maven can enforce dependencies (both internal
and external) and help with documenting them

— Updating package names such that it should be
clear which classes constitute “apis” and which
are for internal use only

(o) N

Typical Module Breakdown

framework

(o) RSN

rice-standalone

Web
Applications

cmn-web ksb-web kim-web kew-web ken-web krms-web sd-web

krad-rules

krad-document

krad-uikit

krad-web-struts

Web
Framework

krad-kim-integration krad-kew-integration

Module
Frameworks

krms-framework sd-framework

2

kim-framework kew-fra rk ken-fra

2

krad-dd krad-bo krad-note

Application
Framework

cmn-api ksb-api kim-api kew-api ken-api krms-api sd-api

APls

core-api

Acronyms

cmn -Common Senvices

ksb - Kuali Service Bus

kim - Kuali Identity Management

kew - Kuali Enterprise Workflow

ken - Kuali Enterprise Notification

krms - Kuali Rule Management System

sd -Shared Data Services

krad - Kuali Rapid Application Development
core - Kuali Rice Core

Implementation
Code

Why Do This?

* Decrease the complexity of rice
* |solate external dependencies
* Reduce coupling in rice

e Allow modules of rice to be developed and tested in
isolation

* Improve the quality of the rice codebase

* Make it explicit what code client apps can use
— which helps rice make guarantees on releases
— make client upgrades easier

* Provide more deployment and integration flexibility
* Version Compatibility

(e

Version Compatibility

* Concerned primarily with client-server
communication with Kuali Rice services

— We call this “middleware” compatibility
* Applications written against different versions

of the Rice middleware services need to be
able to interoperate

e Should be able to upgrade middleware
services without requiring every client to
upgrade at the same time

(e

Current Situation

Rice version Rice released KFS version KC version KS version
Rice 2.0 Q3 2011 KFS 5.0 KC 3.2 KS 2.0
Rice 1.0.3.2 06/01/11 KFS 4.1 KC 3.1 KS 1.2
Rice 1.0.3.1 02/11/11 KFS 4.0, KFS 4.1 KC 3.0* KS 1.1**
Rice 1.0.3 10/29/10 KFS 4.0 KC 3.0

Rice 1.0.2.1 07/23/10 KC 2.0

Rice 1.0.2 05/15/10 KC 2.0
Rice 1.0.1.1 02/05/10 KFS 3.0.1

Rice 1.0.1 10/30/2009 KFS 3.0

Rice 1.0 08/14/2009

Rice 0.9.2.1 05/09/2008 KFS 2.2

(o) N

Desired Situation

All versions Major Release Major Release

contained within
a major release

are compatible Major releases

Minor are nat Minor
Release . PaICh o ('essarlly Release T
ompatlble
with eac
other

Minor Minor
Release . . . Release . . .

Lifespan Summary:

Patch Release — as needed
Minor Release — every 6 months
Major Release — every 2-3 years

(e

Existing Compatibility Challenges

* Service contracts not always well defined

e Difficult for clients to know which code
constitutes apis that they should be using

e Using Java Serialization over HTTP in many places

* Direct connections from client applications into
the Kuali Rice database

* Project moving quickly the last few years, lots of
change

* Verifying and enforcing compatibility

(e

Path to Compatibility

 Reduce amount of direct database integration
with Rice database from clients

— Can’t be totally eliminated for 2.0
* Move public services apis to “api” modules
* Create package structures that reflect modularity
* Use SOAP for service integration

* Design message formats to allow for extensibility
and compatibility across versions

* Add support for version information to KSB
service registry

(e

Enforcing Compatibility

* Define a set of rules for “evolving” services
— Only add operations and data elements
— Never remove, but can deprecate

— |If major changes needed, a new service must be
created

* Implement automated tests against various
services which can be run against later
versions

* Operationalize a governance process for
service apis

Kuali Rule Management System (KRMS)

e KRMS is a new module in Rice 2.0

* Implements a Business Rule Management
System (BRMS)

e BRMS - a system used to define, deploy,
execute, monitor and maintain business rules

* Business Rules — decision logic that is used by
operational systems within an organization or
enterprise

Motivations — Kuali Coeus

* Functional equivalence with MIT Coeus
* Workflow Rules

* Notification Rules

e Validation Rules

* Questionaire Rules

* GUI for maintaining rules

* |Integrates with data in Coeus database
e Supports custom KC “Functions”

(e

Motivations — Kuali Student

e Kuali Student also has needs for a BRMS

* Course Prerequisites
— Student needs courses <course list>
— Student needs a minimum GPA of <average>
— Student must have permission from advisor
— Etc.

* Workflow Routing

* Already implemented a repository for rules,
but needed an execution engine

(e

Overall Requirements for KRMS

* General enough to be used in many different
cases

— But must satisfy at least KC and KS requirements
* Rule Repository

* Execution Engine

— Must be able to track execution plan and provide
information back to caller for decision support

* Maintenance GUI
e Extensible and Pluggable

(o) N

Terminology

* Proposition — a function that resolves to true or
false
— amount > S1000
* Compound Proposition — a kind of proposition
that groups other propositions joined by AND or
OR operator
— ((amount > $1000) AND (category = “other”) AND ...)

e Action - Executed if a rule evaluates to “true”
— Notify unit coordinater

— Route an approval request

— Generate a validation error
(o) R

Terminology

* Rule —a proposition linked with a list of actions
to execute if proposition evaluates to “true”

 Agenda — execution plan for a set of rules

— Controls the execution flow of rules in the agenda
when it is executed

— Can optionally contain conditional branching

* Term — a pieces of business data that can be used
in the construction of propositions

e Fact—an instance of a term
e Context —a domain in which rules run

(e

KRMS Ul: Rule Editor

Name: ’Team 4 and Leadership

w hide T=4 AND (Name="Bart" OR (Name="Peter" AND isBartSilly()=True) OR (Name="Bill" AND X=3))

Proposition(s) [~ Collapse All [+ Expand All
T=4
[AND “Chairman or Manager(s)"]
Name="Bart"
[OR "Peter's Project"]
Name="Peter"
And
isBartSilly()=True
[OR "unnamed"]
Name="Bill"
And
X=3

KRMS - Architecture

Client
Application

Rule Engine API

Implementation Options I

Repository Context |
Provider

Translate Rule
Models to DRL

KRMS Engine

T

A

Load contexts,
agendas, and rules
into the engine for
execution

Drools
Expert

Term Resolution
Engine

SOAP

Context Selection

User Interface

Maintenance

Ul reads and writes Rule
Repository Data

Agenda Selection

Rule Repository

Implementation Options

Drools
Guvnor

Jack
Rabbit

Integration

e Kuali Student

— KRMS has it’s own remotely accessible repository, but
KS will be integrating with their pre-existing
“Statement Service”
e Kuali Coeus
— will build custom integration with their questionnaire
component

» KRMS will integrate with other portions of Rice
via custom rule “actions”

— KEW
— KEN
— KRAD (for validation)

Kuali Rapid Application Development (KRAD)

 KRAD is intended to be a replacement for the
Kuali Nervous System (KNS)

KNS was created by the Kuali Financial System
team early on in the project to create a

development framework to build functionality
quickly

* Extracted and included as part of the first
release of Kuali Rice

Legacy KNS

* Provides reusable code, shared services,
integration layer, and a development strategy

* Provides a common look and feel through
screen drawing framework

* Promotes a document (business process)
centric model with workflow as a core concept

— Built-in integration with KEW

* Provides built-in integration with Kuali Identity
Management for authorization

(e

KNS Core Concepts

* Business Objects — represents the data model for
the application

* Lookups — allows for performing searches against
ousiness object data

* Inquiries — ¢ isplays detailed information about
ousiness objects

 Documents — data entry (create and edit, can
interact with workflow)

e Data Dictionary — defines metadata about
business objects, lookup, inquiries, and
documents

(o) N

Sample KNS Screen

Billing Address

AS

(" Document Overview v hide \

Edit Billing Address

Notes and Attachments (0) » show
" Ad Hoc Recipients » show

" Route Log » show

Doc Nbr: 3373 Status: |INITIATED
Initiator: khuntley| Created: |02:14 PM 09/19/2010

expand all collapse all
* required field

* Description:

Org. Doc. #:

Explanation:

New

* Billing Campus Code:

* Billing Name:
* Billing Line 1 Address:
Billing Line 2 Address:

* Billing City Name:
Billing State Code:

Billing Postal Code:
* Billing Country Code:

* Billing Phone Number:

Active Indicator:

submit save blanket approve close cancel

Why KRAD?

e KNS is Struts 1.x based
e Very little built-in rich user interface support

* User experience is desighed more for
administrative users

* Only has built-in support for a small set of
screen types

* Note however, most of the core concepts
from KNS are still relevant in KRAD

(o) N

Why KRAD?

e Kuali Student has a wider variety of UX (user
experience) requirements

* Need better support for “self-service” screens
for which the KNS is not well suited

e A need for Web 2.0 and other Rich Internet
Application features

e Support for more complex types of screens
and layouts

KRAD Features — Rich Ul

e Lightbox support for Inquiries, Lookups,
Confirmations, and expanded Text Areas

ernél Billing UOC NDI': D14 STatus: (INFIAw.
£ y
Initiator: day Created: 10:31 AM 11,

[“expand all_| [collapse]

UEEIERIE Account Lookup

Chart Code:
Account Number:
Account Name:
Organization Code:

Account Type Code: ;

Sub-Fund Group Code: &)
Fiscal Officer Principal 3

Name:
Closed?: Yes @ No Both

search clear cancel

0301000 £ S o742 | &

EAST NON-GENERAL FUND ACCOUNT SUM2 CR HR FEE APPL MUSIC

KRAD Features — Rich Ul

* Constraint Message — displays field
restrictions

Course Number

Must be 3 digit number

 Watermark — displays in text field (ex. date
format)

Course Number

Watermark

Must be 3 digit number

KRAD Features — Rich Ul

 Growls — notifications about events
* Built in growls for Save & Route

* Other Messages:
— Roll over field level help
— Always displayed field Summary
— Page submit/load notification

KRAD Features — Rich Ul

* Progressive Disclosure
 Show information when needed

 Show/Hide
— Sections (Tabs)
— Groups (Parts of Tab)
— Fields
— Field Group (Grouping of fields)

e Server & Client side support

KRAD Features — Rich Ul

 Client side validation

— Automatic translation of dictionary validation to
client validation script

* Improved Navigation (breadcrumbs)

* Text based button generation R
* Auto-complete Fields
* Improved Calendar widget

KRAD Technology

* Spring MVC as the model-view-controller
framework for KRAD

* Apache Tiles as the templating engine
* Fluid Skinning System for CSS

* jQuery as the javascript library

— Including jQuery Ul
— And other plugins providing functionality like AJAX

Sample KRAD Screens — KNS Look and Feel

(23 action list | (8 doc search |

Travel Account Maintenance

V¥ Document Overview

Logged in User: admin

Document Number:" 3686 Document Status: | INITIATED
Initiator Network ld:} admin Creation Timestamp: | 09:26 AM 04/27/2011

expand all collapse all
* indicates required field

* Description:

Organization Document Number:

Explanation:

V¥ Account Information

Travel Account Number:

Unique identifier for account

Account Name:

* Travel Account Type Code:

Type code grouping for account
Q4

Travel Sub Account Number:

Sub Account Name:
Date Created:

Subsidized Percent:

Travel Fiscal Officer Id:

B

Responsbile for aproving account expenses
Q

Sample KRAD Screens — KS Look and Feel

New Course (Proposal)

Course Logistics

P SECTION _ } _)
COURSE SEGEIONS Indicate the scheduling, learning results and course format for this course.

Scheduling

Lear (=} (oL

Term
Selecting a single term will restrict this course to only that term. "Any’ will allow the course to be offere
in any term that matches the duration selected below.

] Any
I Fall
"] spring

| Summer
("] Winter

Duration Count

First select the duration type (term, month, week, weekend, day) then select the count of the duration
terms, for example.

Duration Type Duration

Sample KRAD Screens — Admin Look and Feel

ACH Setup

expand all collapse all

* indicates required field

¥ Bank Information

Provide basic information for the ACH Bank

Bankl|d: Please provide the established federal Id

* Bank Name:

Account Open Date:

Bank Type Code:

(e

KRAD Views

* Full-working user interface functionality solutions
that can be modified as needed

* Encompasses much of the existing KNS
functionality such as lookups, inquiries, and
maintenance

* Defined declaratively in Spring configuration as
part of KRAD Component Framework

* Backed by Spring MVC

* |Integrated with other Rice modules such as KEW,
KIM, and KRMS

(e

Views in Action! \:

* Mouthe
flud < Tiles slev

After Rice 2.0

e Kuali Rice has a roadmap committee which
works with project investors to assemble and
maintain the Kuali Rice Roadmap

e Kuali Rice 2.1

— Continued work on KRAD features
— XML Data Import and Export tools
— KEW workflow engine escalation

(o) N

After Rice 2.0

e Kuali Rice 2.2

— Implement KEW GUI for designing workflow
processes

e Kuali Rice 2.3

— Additional RAD Tools for application development
— Update of Accessibility Standards

e Kuali Rice has a dedicated UX Architect now
— Batch Scheduler and Monitor

(o) N

Questions?

* Thanks for Coming!
* Questions???

e Kuali Days 2011 — November 14-16 -
Indianapolis, IN

— Call for proposals open now!

