
Implementing CAS

Adam Rybicki
2010 Jasig Conference, San Diego, CA

March 7, 2010

© Copyright Unicon, Inc., 2009. This work is the intellectual property of Unicon, Inc. Permission is granted for this material to be shared for
non-commercial, educational purposes, provided that this copyright statement appears on the reproduced materials and notice is given that
the copying is by permission of Unicon, Inc. To disseminate otherwise or to republish requires written permission from Unicon, Inc.

1. Introduction

2. Problems CAS solves

3. CAS protocol

4. Building from sources

5. Customizing the presentation

6. Authentication handlers

7. CAS-enabling applications

8. Using Proxy CAS

9. Advanced Topics

• Clustering

• Service Registry

• Single Sign-Out

Introduction

Who are we?

What is CAS?

Brief history of CAS

Adam’s Involvement with CAS

• Got interested.

• Worked with several clients helping them to CASify
their applications.

• Asked many questions of the CAS mail list

• Wrote a CAS self-study guide for Unicon developers.
(https://confluence.unicon.net/confluence/x/XgZi) (authentication required)

• Answered some questions on the CAS list.

• Currently working with Unicon clients on CAS server
implementations and CAS-enabling their Web
applications.

Introductions

• Who are you?

– Name

– Institution

– Role

– Why interested in CAS?

What is CAS?

• CAS is enterprise single-sign-on for the Web.

– Free

– Open source

– Server implemented in Java

– Clients implemented in a plethora of languages

Some of the people involved as the project
has evolved

• Marvin Addison

• Scott Battaglia

• Shawn Bayern

• Susan Bramhall

• Marc-Antoine Garrigue

• Howard Gilbert

• Dmitriy Kopylenko

• Arnaud Lesueur

• Drew Mazurek

• Benn Oshrin

• Jan Van der Velpen (Velpi)

Problems CAS solves

Disparate credentials and name spaces

Too many Web applications dealing with credentials

CAS creates new challenges, too

Multi-sign-on for the Web

At least with one username/password?

LDAP

All applications touch passwords

LDAP

Any compromise leaks primary credentials

LDAP

Adversary then can run wild

LDAP

What to do about this?

• What if there were only one login form, only
one application trusted to touch primary
credentials?

Delete your login forms.

CAS in a nutshell

Browser
Web application

Authenticateswithout sending password

Authenticates

via password (once)

Determinesvalidity of user’sclaimedauthentication

LDAP

Webapps no longer touch passwords

CAS

LDAP

Adversary compromises only single apps

CAS

What about portals?

Need to go get interesting content from different systems.

Portal

Password Replay

Password-
Protected
Service

Password-
Protected
Service

Password-
Protected
Service

Channel

Channel

Channel

PW

PW

PW

PW

PW

PW

PW

PW

PW

PW

PW

CAS Protocol

Tickets and services

Ticket validation

Proxy authentication

How CAS Works

CASWeb
Application

Web
Browser

What about portals?

Need to go get interesting content from different systems.

Portal

Password Replay

Password-
Protected
Service

Password-
Protected
Service

Password-
Protected
Service

Channel

Channel

Channel

PW

PW

PW

PW

PW

PW

PW

PW

PW

PW

PW

Look ma, no password!

• Without a password to replay, how am I going
to authenticate my portal to other
applications?

Proxy CAS

CASWeb
Application

Web
Browser

https listener •

Proxy CAS

• Feature unique to CAS among most of SSO
systems

• Allows some Web applications to act as
proxies on behalf of the users

• Proxied Web applications may act as N-th
level proxies

http://www.jasig.org/cas/protocol

Provided Authentication Handlers
• LDAP

– Fast bind

– Search and bind

• Active Directory
– LDAP

– Kerberos (JAAS)

• JAAS

• JDBC

• RADIUS

• SPNEGO

• Trusted

• X.509 certificates

• Writing a custom authentication handler is easy

CAS – More than Authentication

• Return attributes of logged on users

• Adding support for standards
– OpenID

– SAML

• Single Sign-Out

• RESTful API

• Support for clustering
– Implements distributed ticket registry

– Must guarantee cross-server ticket uniqueness

• Services management (white listing)

• Remember me (long-term SSO)

CAS Roadmap

CAS 3.4 Release
• Upgrades to "core" libraries including Spring (to 3.0), Spring Web Flow (to 2.0), Spring

Security (to 3.0)

• Updates to Web Flow-related classes to confirm with Web Flow 2.0 model

• Mobile CAS UI

CAS 3.5 Release
• Upgrades to core storage mechanisms. Most importantly, the API

• Introduction of core Factories for creating tickets

• Update to Ticket terminology to support future protocols

• Replacement of Jasig License with Apache 2 License

CAS 3.6 Release
• Rewrite of Services Management Tool

• Extraction of Services Management Tool into its own Web Application

• Addition of Registration Tool

CAS Roadmap (cont.)

CAS 3.7 Release
• Rewrite of two Core Interfaces: CentralAuthenticationService, AuthenticationManager to support additional

use cases:
– message passing to users

– better throttling

– CAPTCHA,

– integration with password management tools

• Updated UI for:
– message returning

– reflect recent UI trends (immediate feedback on validation, etc.)

• Enable Advanced Use Cases including Session Id switching per request, etc.

CAS 3.8 Release
• Monitoring: JMX, Statistics publishing, support for Nagios, etc.

CAS 3.9 Release
• Support for OpenID2. This would be the first test of the new APIs to ensure we can support additional

protocols

CAS 4.0 Release
• Basic SAML 2 support. "Basic" is defined as the minimal subset of required profiles to actually do

something useful

CAS 4.x Releases
• Support for additional SAML 2 profiles, additional useful protocols, etc.

Building from sources

Obtaining the distribution

Requirements and tools

File structure and dependencies

Obtaining the distribution

• http://www.jasig.org/cas/

• SVN at developer.ja-sig.org
svn checkout https://www.ja-
sig.org/svn/cas3/tags/cas-3-3-5-final/
cas-server

• Import and maintain in your source control’s
vendor branch

Requirements to build CAS

• Required

– Java Development Kit 5 or 6

– Maven 2

• Optional

– SVN

– Eclipse (with SVN, Spring, and Maven plugins)

– Tomcat (gotta test it somewhere!)

File structure and dependencies

• Top-level Project Object Model (POM or
pom.xml) used for all builds and to build
dependent sub-projects.

• The top-level POM builds all the sub-projects,
but by default they are NOT included in the
resulting war file.

• To add dependent sub-projects or additional
external libraries to the war file, you need to
add dependencies to pom.xml in cas-server-
webapp.

Adding a dependency to pom.xml

<!-- ... -->
<dependency>
<groupId>ognl</groupId>
<artifactId>ognl</artifactId>
<version>2.6.9</version>
<scope>runtime</scope>

</dependency>

<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>cas-server-support-ldap</artifactId>
<version>${project.version}</version>

</dependency>

<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.14</version>
<type>jar</type>
<scope>runtime</scope>

</dependency>
<!-- ... -->

Building using Maven overlay method

Requirements

Project Structure

Dependencies

Requirements to build CAS

• Required

– Java Development Kit 5 or 6

– Maven 2

• Optional

– SVN

– Eclipse (with SVN, Spring, and Maven plugins)

– Tomcat (gotta test it somewhere!)

Maven overlay build

• Retrieves the CAS war file from a repository and
“overlays” your customizations on top of it.

• You only have to track changes to a handful of files.

• Upgrading to a newer version of CAS is as simple as
changing its version in pom.xml.

• You will likely only have to overlay the CAS war file,
or cas-server-webapp.

• Be careful when upgrading: the files you are
overlaying may have been modified by Jasig in the
upgraded version, too.

File structure and dependencies

• Start with just Project Object Model (pom.xml)
in an empty project directory.

• Add files, as needed, to “overlay” those in the
standard WAR file.
– Your own deployerConfigContext.xml would be

the first such file.

– May want to add institutional images and CSS
modifications.

• Add dependencies, as needed, to additional
CAS modules.

Configuring CAS

deployerConfigContext.xml

web.xml

log4j.properties

deployerConfigContext.xml

• Located in
cas-server-webapp/src/main/webapp/WEB-INF

• Deployer-specific configuration file

• This is the first and possibly the only file you have to
modify

• Replace the default authentication handler with the
one your deployment needs

• Add configuration options that your authentication
handler requires

deployerConfigContext.xml example
<bean id="authenticationManager" class="org.jasig.cas.authentication.AuthenticationManagerImpl">
<!-- ... -->
<property name="authenticationHandlers">
<list>
<!--
| This is the authentication handler that authenticates services by means of callback via SSL, thereby validating
| a server side SSL certificate.
+-->

<bean class="org.jasig.cas.authentication.handler.support.HttpBasedServiceCredentialsAuthenticationHandler" />

<bean class="org.jasig.cas.adaptors.ldap.BindLdapAuthenticationHandler">
<property name="filter" value="uid=%u" />
<property name="searchBase" value="ou=People,dc=training" />
<property name="contextSource" ref="contextSource" />

</bean>
</list>

</property>
</bean>

<bean id="contextSource" class="org.springframework.ldap.core.support.LdapContextSource">
<property name="anonymousReadOnly" value="true" />
<property name="password" value="{password_goes_here}" />
<property name="urls">
<list>

<value>ldap://localhost/</value>
</list>

</property>
<property name="userName" value="{username_goes_here}" />
<property name="baseEnvironmentProperties">
<map>
<entry>
<key><value>java.naming.security.authentication</value></key>
<value>simple</value>

</entry>
</map>

</property>
</bean>

web.xml

• Located in
cas-server-webapp/src/main/webapp/WEB-INF

• Standard JEE deployment descriptor

• All endpoints defined as mapped to one servlet

• Uses Spring WebMVC

• This is the “root” of the CAS Web application
configuration

• Re-enable the user-friendly error reporting

• Lists all the Spring context configuration files

• My need to add auditTrailContext.xml

log4j.properties

• Located in
cas-server-webapp/src/main/webapp/WEB-
INF/classes

• Log4j periodically re-reads this file (no Tomcat restart
needed after editing)

• Add fully-qualified path to cas.log, possibly like this:
${catalina.base}/logs/cas.log

• May want to increase the log level for troubleshooting

• Warning: setting the log level to DEBUG or higher will
log users’ passwords

CAS-enabling (or CASifying) Web
applications

uPortal

Tomcat Manager

uPortal 2.x

• Edit properties/security.properties

• Edit webpages/WEB-INF/web.xml

• Edit (uPortal 2.x only)
webpages/stylesheets/org/jasig/portal/channels/CLogin

/html.xsl

• Deploy the changes

• Restart uPortal

uPortal 3.x

• Edit uportal-impl/src/main/resources/
properties/security.properties

– https

– Fully-qualified domain names

• Edit uportal-war/src/main/webapp/WEB-INF/web.xml
– https

– fully-qualified domain names
– remove the BROKEN_SECURITY_ALLOW_NON_SSL hack

• Deploy the changes with ant deploy-war

• Restart uPortal

• Details at: http://www.ja-sig.org/wiki/x/zwSDAQ

Tomcat Manager

• Tomcat Manager relies on container authentication

• This example illustrates how CAS authentication can
replace Tomcat’s BASIC Authentication without
having to write or modify any code

• Locate the Manager applications deployment
descriptor (web.xml)

• Replace its original authentication section with CAS
filter-based authentication

• Add simple authorization

• http://www.ja-sig.org/wiki/x/5yM

Proxy CAS examples

• Use CWebProxy channel to access Tomcat’s
Manager app
– Publish a new CWebProxy channel and point it at

https://adam3:8443/manager/status

– Enter
org.jasig.portal.security.provider.cas.CasConnectionContext in
the LocalConnectionContext Implementation field

• Use WebProxy Portlet to access Tomcat’s Manager
app
– Build WebProxy Portlet overlay with documented changes

– Follow the instructions here: http://www.ja-
sig.org/wiki/x/uICuAQ

Advanced Topics

Clustering

Service Registry

Single Sign-Out

CAS Clustering

• Needed mostly for redundancy, not load-handling

• No need for HttpSession replication
– The complex instructions on the Clustering CAS page can be replaced by adding

repository-type="client“ attribute to the flow:executor element in cas-servlet.xml

• Enter each node’s FQDN in cas.properties

• Must use distributed ticket registry
– JpaTicketRegistry

– JBossCacheTicketRegistry

– MemCacheTicketRegistry

• Must take care of the registry cleaner
– Default cleaner insufficient

– Distributed cleaner available with CAS 3.4

• Details: http://www.ja-sig.org/wiki/x/mYJc

Service Registry

• “White List” of applications allowed to authenticate to
CAS

• Administered using a Web UI (CAS-enabled itself)

• Requires a database

• Allows controlling of which attributes will be released
to which services

• Must add the service registry URL as the first service
to avoid locking out access to the service registry
management interface

• Details: http://www.ja-sig.org/wiki/x/5gIl

Enabling service registry

<bean id="userDetailsService" class="org.acegisecurity.userdetails.memory.InMemoryDaoImpl">
<property name="userMap">

<value>

</value>
</property>

</bean>

Find a section of deployerConfigContext.xml that looks like this:

<bean id="userDetailsService" class="org.acegisecurity.userdetails.memory.InMemoryDaoImpl">
<property name="userMap">

<value>
adam=notused,ROLE_ADMIN

</value>
</property>

</bean>

and make it look like this:

Now user “adam” is authorized to manage services.
Need to enable the database persistence, too.

Single Sign-Out

• CAS notifies services that a user has
singed out of CAS

• Services must implement CAS SSOut
by “reacting” to CAS SSOut events

• Identifies a signed out user by a service
ticket that was user to log in that user

• Details: http://www.ja-sig.org/wiki/x/6QNl

Single sign-out

Web
application CAS

Web
browser

Lo
go

ut
“Y

ou
’ve

 be
en

 lo
gg

ed
 ou

t”

HTTP POST: ST

No communication between
the browser and
Web application!

Adam Rybicki
arybicki@unicon.net

www.unicon.net

Questions?

