
CLUSTERING CAS for High Availability

Eric Pierce, University of South Florida

• High Availability Basics
• Before Clustering CAS
• Failover with Heartbeat
• Ticket Registry
• Load Balancing
• CAS at USF

Overview

HA is all about risk

  Make a list of possible Single-Points-of-Failure
 Single connections to ANYTHING (Power, Network, etc)
 Not just your servers – think about the datacenter
 Try to quantify for management

 How likely is this failure?
 If it happens, how long will it take to fix?
 How much will we lose while it is down?

 Don’t forget the human element!

Mitigating the risk

  Make a list of possible solutions
 There are multiple ways to combat most SPoFs
 Assign a relative cost score to each

 The scoring system depends on your resources
 Some things are easy to implement, but expensive
 Cheaper solutions are (usually) more time-consuming

  Work with management
 What risks are they willing to accept?

Why Cluster CAS?

 CAS is the central hub to all your web applications
 Without CAS, no one can use any applications
 A single machine is not enough

• CAS Architecture
• Authentication
• Service Management and Auditing

Before Clustering CAS

A Single CAS Server

Before Clustering CAS

Authentication Source
 Active Directory

 Multiple Domain Controllers

 LDAP replication
 Multi-Master replication

 Kerberos
 JAAS can query multiple KDCs

 Database
 Replication abilities product-specific

Before Clustering CAS

  Service Management
 Storage Options

 Database
 LDAP

 Service Registry is reloaded on all cluster nodes on a
regular basis (since 3.3.4)

  Auditing & Statistics
 Storage Options

 Database
 Local File

Both are optional, but recommended for production

• Heartbeat
• Failover versus Load Balancing

CAS Failover with Heartbeat

Heartbeat http://www.linux-ha.org

  Part of the Linux-HA Project
  Runs on most Unix-based Operating Systems

  Provides communication layer between cluster nodes

  Sends regular ‘heartbeat’ between nodes to test health

  Cluster Resource Manager handles starting/stopping resources
  CRM from Heartbeat has spun-off to a separate project:

  Pacemaker - http://clusterlabs.org

CAS failover with Heartbeat

CAS failover with Heartbeat

CAS failover with Heartbeat

Pros & Cons of Failover

  Very easy to configure
 Linux distros include all you need
 GUI and CLI clients for setup & management

  No changes to CAS configuration required

  User Experience
 All TGTs & STs are lost on failover
 Users must re-authenticate after failover

  Wasted Resources
  If both servers are up, one is totally idle

Load balancing to the rescue?

Load balancing to the rescue?

  Resource Usage improves
 Both servers are now utilized 100% of the time
 Hardware SSL on the LB might improve performance

  User Experience is worse
 Half (on average) of all ticket verifications fail
 The TicketRegistry is not shared between servers

• JBOSS Cache
• Memcached
• Java Persistence API

Shared Ticket Registry

Shared Ticket Registry

JBOSS Cache http://jboss.org/jbosscache

  Clustered cache service
  Distributes cache changes using JGroups
  Cache storage is not persistent in default config

 JDBC and flat-file storage available for persistence

  Details on setting up JBossCacheTicketRegistry are
available at the Jasig Wiki:

http://www.ja-sig.org/wiki/display/CASUM/Clustering+CAS

JBOSS Cache

JBOSS
Cache

JBOSS
Cache

JBOSS TicketRegistry

Create
Ticket

C
re

at
e

Ti
ck

et

Read
Ticket

Ti
ck

et

Ti
ck

et

Read
Ticket

JBOSS
Cache Ti

ck
et

Read
Ticket

Memcached http://memcached.org

  Distributed caching system
  Hashing algorithm selects which node to store data on
  Cache is stored in memory

 Cache storage is not persistent
 Oldest objects are removed when cache is filled

  Simple, lightweight and fast
  Repcached patch adds 2-server data replication

 http://repcached.lab.klab.org/
 Project stagnate?

Memcached

Memcached TicketRegistry

Memcached

Ticket Foo

Memcached

Ticket Bar
Ticket Baz

Hash Results

Server 2 Server 1

Baz = Server 2
Bar = Server 2
Foo = Server 1

Set Set

Memcached with Repcache

Memcached TicketRegistry

Memcached

Ticket Foo

Memcached

Ticket Bar
Ticket Baz

Hash Results

Server 2 Server 1

Baz = Server 2
Bar = Server 2
Foo = Server 1

Set Set

Repcache

Ticket Foo
Ticket Bar
Ticket Baz

Foo = Server 1
Bar = Server 1
Baz = Server 1

JPA Ticket Registry

  Tickets are stored in a database
 Storage is persistent
 Database HA is a necessity!

  Performance is can be very good
 Dependant on the speed of the db configuration

  Registry Cleaning
 Deadlocks have been an issue with the default cleaner
 CAS 3.4 introduces LockingStrategy

JdbcLockingStrategy

  Cleaner attempts to ensure exclusive access to the
DB before removing any expired tickets

  Uses a database table to hold lock state
  Only one node can clean the registry at a time
  Lock can be set by any node after expiration time

Which one should I use?

  JBoss Cache
 Very flexible but complicated
 Good option for clusters >2 nodes

  Memcached
 Easiest option for a 2-node cluster
 Status of repcache project is a concern

  JPA
 Best data integrity/reliability
 Obvious choice if you already have an HA database
 Best choice for very long ticket lifetimes (Remember me)
 Needs CAS 3.3.4 or newer (3.4 would be best)

• Load Balancing with Free software
• Hardware vs. Software Load Balancing
• N-to-N Cluster

Load Balancing

Software Load Balancing

  Combination of Apache modules
 mod_proxy_ajp
 mod_proxy_balancer

  Simple to configure:
 ProxyPass /cas balancer://mycluster

 <Proxy balancer://mycluster>

 BalancerMember ajp://server1:8009/cas

 BalancerMember ajp://server2:8009/cas

 </Proxy>  

Software Load Balancing

Hardware vs. Software LB

  Hardware
 High Performance
 SSL off-load
 Can be expensive
 Need multiple devices for HA

  Software
 Free (as in Speech & Beer)
 Very configurable

N-to-N Cluster

N-to-N Cluster

Tomcat Sessions

  CAS Clustering wiki page recommends session
replication

  You don’t need it
 Adds complexity
 Session is only used for storing the webflow state

  Change WEB-INF/cas-servlet.xml:
<flow:executor id="flowExecutor" registry-

ref="flowRegistry" repository-type="client">

CAS at USF

USF CAS Cluster (v1)

  In service Feb. 2008 – Oct. 2009
  Failover Cluster using Heartbeat
  Default (non-shared) Ticket Registry
  Apache/Tomcat shared by CAS and Shibboleth IdP
  Service Registry & Auditing use MySQL

 Master-Master Replication

USF CAS Cluster (v1)

Problems with version1

  Location
 Servers were in the same (poorly outfitted) server room

  Performance
 During high-load, CAS & Shibboleth were a bit slow

  User Experience
 All tickets were lost on failover, forcing users to login

again

USF CAS Cluster (v2)

  In production since Oct. 2009
  4-node N-to-N Cluster using Heartbeat/Pacemaker
  Geographically separated (~1KM apart)
  Memcached Ticket Registry (Repcache)
  CAS, Shibboleth and other webapps have

‘dedicated’ machines
  Service Registry & Auditing on dedicated hardware

Future Additions

  Hardware Load Balancing
  Off-campus Disaster-Recovery site

 Currently in Tallahassee
 Moving it farther North

  Persistent Ticket Storage
 ‘Remember Me’ function is highly requested
 JPA or JBOSS Cache with persistent storage

Questions?

ERIC PIERCE
epierce@usf.edu

http://creativecommons.org/licenses/by-sa/3.0/us/

