
CLUSTERING CAS for High Availability

Eric Pierce, University of South Florida

• High Availability Basics
• Before Clustering CAS
• Failover with Heartbeat
• Ticket Registry
• Load Balancing
• CAS at USF

Overview

HA is all about risk

  Make a list of possible Single-Points-of-Failure
 Single connections to ANYTHING (Power, Network, etc)
 Not just your servers – think about the datacenter
 Try to quantify for management

 How likely is this failure?
 If it happens, how long will it take to fix?
 How much will we lose while it is down?

 Don’t forget the human element!

Mitigating the risk

  Make a list of possible solutions
 There are multiple ways to combat most SPoFs
 Assign a relative cost score to each

 The scoring system depends on your resources
 Some things are easy to implement, but expensive
 Cheaper solutions are (usually) more time-consuming

  Work with management
 What risks are they willing to accept?

Why Cluster CAS?

 CAS is the central hub to all your web applications
 Without CAS, no one can use any applications
 A single machine is not enough

• CAS Architecture
• Authentication
• Service Management and Auditing

Before Clustering CAS

A Single CAS Server

Before Clustering CAS

Authentication Source
 Active Directory

 Multiple Domain Controllers

 LDAP replication
 Multi-Master replication

 Kerberos
 JAAS can query multiple KDCs

 Database
 Replication abilities product-specific

Before Clustering CAS

  Service Management
 Storage Options

 Database
 LDAP

 Service Registry is reloaded on all cluster nodes on a
regular basis (since 3.3.4)

  Auditing & Statistics
 Storage Options

 Database
 Local File

Both are optional, but recommended for production

• Heartbeat
• Failover versus Load Balancing

CAS Failover with Heartbeat

Heartbeat http://www.linux-ha.org

  Part of the Linux-HA Project
  Runs on most Unix-based Operating Systems

  Provides communication layer between cluster nodes

  Sends regular ‘heartbeat’ between nodes to test health

  Cluster Resource Manager handles starting/stopping resources
  CRM from Heartbeat has spun-off to a separate project:

  Pacemaker - http://clusterlabs.org

CAS failover with Heartbeat

CAS failover with Heartbeat

CAS failover with Heartbeat

Pros & Cons of Failover

  Very easy to configure
 Linux distros include all you need
 GUI and CLI clients for setup & management

  No changes to CAS configuration required

  User Experience
 All TGTs & STs are lost on failover
 Users must re-authenticate after failover

  Wasted Resources
  If both servers are up, one is totally idle

Load balancing to the rescue?

Load balancing to the rescue?

  Resource Usage improves
 Both servers are now utilized 100% of the time
 Hardware SSL on the LB might improve performance

  User Experience is worse
 Half (on average) of all ticket verifications fail
 The TicketRegistry is not shared between servers

• JBOSS Cache
• Memcached
• Java Persistence API

Shared Ticket Registry

Shared Ticket Registry

JBOSS Cache http://jboss.org/jbosscache

  Clustered cache service
  Distributes cache changes using JGroups
  Cache storage is not persistent in default config

 JDBC and flat-file storage available for persistence

  Details on setting up JBossCacheTicketRegistry are
available at the Jasig Wiki:

http://www.ja-sig.org/wiki/display/CASUM/Clustering+CAS

JBOSS Cache

JBOSS
Cache

JBOSS
Cache

JBOSS TicketRegistry

Create
Ticket

C
re

at
e

Ti
ck

et

Read
Ticket

Ti
ck

et

Ti
ck

et

Read
Ticket

JBOSS
Cache Ti

ck
et

Read
Ticket

Memcached http://memcached.org

  Distributed caching system
  Hashing algorithm selects which node to store data on
  Cache is stored in memory

 Cache storage is not persistent
 Oldest objects are removed when cache is filled

  Simple, lightweight and fast
  Repcached patch adds 2-server data replication

 http://repcached.lab.klab.org/
 Project stagnate?

Memcached

Memcached TicketRegistry

Memcached

Ticket Foo

Memcached

Ticket Bar
Ticket Baz

Hash Results

Server 2 Server 1

Baz = Server 2
Bar = Server 2
Foo = Server 1

Set Set

Memcached with Repcache

Memcached TicketRegistry

Memcached

Ticket Foo

Memcached

Ticket Bar
Ticket Baz

Hash Results

Server 2 Server 1

Baz = Server 2
Bar = Server 2
Foo = Server 1

Set Set

Repcache

Ticket Foo
Ticket Bar
Ticket Baz

Foo = Server 1
Bar = Server 1
Baz = Server 1

JPA Ticket Registry

  Tickets are stored in a database
 Storage is persistent
 Database HA is a necessity!

  Performance is can be very good
 Dependant on the speed of the db configuration

  Registry Cleaning
 Deadlocks have been an issue with the default cleaner
 CAS 3.4 introduces LockingStrategy

JdbcLockingStrategy

  Cleaner attempts to ensure exclusive access to the
DB before removing any expired tickets

  Uses a database table to hold lock state
  Only one node can clean the registry at a time
  Lock can be set by any node after expiration time

Which one should I use?

  JBoss Cache
 Very flexible but complicated
 Good option for clusters >2 nodes

  Memcached
 Easiest option for a 2-node cluster
 Status of repcache project is a concern

  JPA
 Best data integrity/reliability
 Obvious choice if you already have an HA database
 Best choice for very long ticket lifetimes (Remember me)
 Needs CAS 3.3.4 or newer (3.4 would be best)

• Load Balancing with Free software
• Hardware vs. Software Load Balancing
• N-to-N Cluster

Load Balancing

Software Load Balancing

  Combination of Apache modules
 mod_proxy_ajp
 mod_proxy_balancer

  Simple to configure:
 ProxyPass /cas balancer://mycluster

 <Proxy balancer://mycluster>

 BalancerMember ajp://server1:8009/cas

 BalancerMember ajp://server2:8009/cas

 </Proxy>  

Software Load Balancing

Hardware vs. Software LB

  Hardware
 High Performance
 SSL off-load
 Can be expensive
 Need multiple devices for HA

  Software
 Free (as in Speech & Beer)
 Very configurable

N-to-N Cluster

N-to-N Cluster

Tomcat Sessions

  CAS Clustering wiki page recommends session
replication

  You don’t need it
 Adds complexity
 Session is only used for storing the webflow state

  Change WEB-INF/cas-servlet.xml:
<flow:executor id="flowExecutor" registry-

ref="flowRegistry" repository-type="client">

CAS at USF

USF CAS Cluster (v1)

  In service Feb. 2008 – Oct. 2009
  Failover Cluster using Heartbeat
  Default (non-shared) Ticket Registry
  Apache/Tomcat shared by CAS and Shibboleth IdP
  Service Registry & Auditing use MySQL

 Master-Master Replication

USF CAS Cluster (v1)

Problems with version1

  Location
 Servers were in the same (poorly outfitted) server room

  Performance
 During high-load, CAS & Shibboleth were a bit slow

  User Experience
 All tickets were lost on failover, forcing users to login

again

USF CAS Cluster (v2)

  In production since Oct. 2009
  4-node N-to-N Cluster using Heartbeat/Pacemaker
  Geographically separated (~1KM apart)
  Memcached Ticket Registry (Repcache)
  CAS, Shibboleth and other webapps have

‘dedicated’ machines
  Service Registry & Auditing on dedicated hardware

Future Additions

  Hardware Load Balancing
  Off-campus Disaster-Recovery site

 Currently in Tallahassee
 Moving it farther North

  Persistent Ticket Storage
 ‘Remember Me’ function is highly requested
 JPA or JBOSS Cache with persistent storage

Questions?

ERIC PIERCE
epierce@usf.edu

http://creativecommons.org/licenses/by-sa/3.0/us/

