CLUSTERING CAS for High Availability

- Eric Pierce, University of South Florida

- Overview

‘High Availability Basics
-Before Clustering CAS

-Failover with Heartbeat

-Ticket Registry
-Load Balancing

‘CAS at USF

HA is all about risk

Make a list of possible Single-Points-of-Failure
Single connections to ANYTHING (Power, Network, etc)
Not just your servers — think about the datacenter

Try to quantify for management
How likely is this failure?
If it happens, how long will it take to fix?

How much will we lose while it is down?

Don’t forget the human element!

Mitigating the risk

Make a list of possible solutions

There are multiple ways to combat most SPoFs

Assign a relative cost score to each
The scoring system depends on your resources
Some things are easy to implement, but expensive

Cheaper solutions are (usually) more time-consuming

Work with management
What risks are they willing to accept?

Why Cluster CAS?

CAS is the central hub to all your web applications
Without CAS, no one can use any applications

A single machine is not enough

- Before Clustering CAS

-CAS Architecture

-Authentication

-Service Management and Auditing

A Single CAS Server

CAS-Protected Client Browsers
Services ® S

ST Creation &

: : User Interface .
Validation Authentication Server

(LDAP, Database, etc)

AuthenticationManager

Auditing

Services
Management 3
Database Server

(Oracle, MySQL, etc)

TicketRegistry

Before Clustering CAS

Authentication Source

Active Directory

Multiple Domain Controllers
LDAP replication

Multi-Master replication
Kerberos

JAAS can query multiple KDCs
Database

Replication abilities product-specific

Before Clustering CAS

Service Management
Storage Options

Database
LDAP

Service Registry is reloaded on all cluster nodes on a
regular basis (since 3.3.4)

Auditing & Statistics
Storage Options

Database

Local File

Both are optional, but recommended for production

- CAS Failover with Heartbeat

-Heartbeat

-‘Failover versus Load Balancing

Heartbeat

Part of the Linux-HA Project

Runs on most Unix-based Operating Systems
Provides communication layer between cluster nodes
Sends regular ‘heartbeat’ between nodes to test health
Cluster Resource Manager handles starting /stopping resources

CRM from Heartbeat has spun-off to a separate project:

Pacemaker -

CAS failover with Heartbeat

CAS-Protected Client
Services Browsers

ST Creation & Validation User Interface

AuthenticationManager

TicketRegistry

ervices
Management

Heartbeat

Virtual IP: 10.0.0.100

Authentication Servers
(LDAP, Database, etc) User Interface ST Creation & Validation

‘ AuthenticationManager

TicketRegistry

ervices
Management

Database Servers
(Oracle, MySQL, etc)

_

Heartbeat

CAS failover with Heartbeat
—

CAS-Protected Client
Services Browsers

Authentication Servers
(LDAP, Database, etc) ST Creation & Validation

AuthenticationManager
.

TicketRegistry
Database Servers
Oracle, MySQL, etc)

Auditing

Services
Management

CAS Server 2
Real IP: 10.0.0.2

Heartbeat

CAS failover with Heartbeat
—

CAS-Protected Client
Services Browsers

ST Creation & Validation

AuthenticationManager

Authentication Serverj
(LDAP, Database, etc

TicketRegistry

Database Servers
Oracle, MySQL, etc)

Auditing

Services
- Management CAS Server 2
Real IP: 10.0.0.2

Heartbeat

Virtual IP: 10.0.0.100

Pros & Cons of Failover

Very easy to configure
Linux distros include all you need

GUI and CLI clients for setup & management

No changes to CAS configuration required

User Experience
All TGTs & STs are lost on failover

Users must re-authenticate after failover

Woasted Resources

If both servers are up, one is totally idle

Load balancing to the rescue?

CAS-Protected Client Browsers

Services

Authentication Servers
ST Creation & Validation User Interface (LDAP, Database, etc) User Interface ST Creation & Validation

AuthenticationManager AuthenticationManager

TicketRegistry TicketRegistry

Auditing

Management

Auditing

Management

Database Servers
(Oracle, MySQL, etc)

Load balancing to the rescue?

Resource Usage improves
Both servers are now utilized 100% of the time

Hardware SSL on the LB might improve performance

User Experience is worse
Half (on average) of all ticket verifications fail

The TicketRegistry is not shared between servers

- Shared Ticket Registry

-JBOSS Cache

-Memcached

-Java Persistence API

Shared Ticket Registry

CAS-Protected Client Browsers

Services

Authentication Servers
ST Creation & Validation User Interface (LDAP, Database, etc) User Interface ST Creation & Validation

AuthenticationManager ‘ AuthenticationManager

TicketRegistry

Auditing
Management

Auditing
Management

Database Servers
(Oracle, MySQL, etc)

JBOSS Cache

Clustered cache service
Distributes cache changes using JGroups

Cache storage is not persistent in default config

JDBC and flat-file storage available for persistence

Details on setting up JBossCacheTicketRegistry dre
available at the Jasig Wiki:

http: / /www.ja-sig.org /wiki/display /CASUM /Clustering+CAS

JBOSS Cache

Read
Ticket

Read
Ticket

JBOSS TicketRegistry

Memcached

Distributed caching system
Hashing algorithm selects which node to store data on
Cache is stored in memory

Cache storage is not persistent

Oldest objects are removed when cache is filled
Simple, lightweight and fast

Repcached patch adds 2-server data replication

Project stagnate?

Memcached

Server 2

Memcached Memcached

Ticket Baz
Ticket Foo Ticket Bar

Hash Results
Foo = Server 1
Bar = Server 2
Baz = Server 2

Memcached TicketRegistry

Memcached with Repcache

Memcached Repcache

Ticket Baz
Ticket Bar
Ticket Foo

Hash Results
Foo = Server 1
Bar = Server 1
Baz = Server 1

Memcached TicketRegistry

JPA Ticket Registry

Tickets are stored in a database
Storage is persistent

Database HA is a necessity!

Performance is can be very good
Dependant on the speed of the db configuration
Registry Cleaning

Deadlocks have been an issue with the default cleaner

CAS 3.4 introduces LockingStrategy

JdbclockingStrategy

Cleaner attempts to ensure exclusive access to the
DB before removing any expired tickets

Uses a database table to hold lock state
Only one node can clean the registry at a time

Lock can be set by any node after expiration time

Which one should | use?¢

JBoss Cache
Very flexible but complicated
Good option for clusters >2 nodes

Memcached
Easiest option for a 2-node cluster
Status of repcache project is a concern

JPA
Best data integrity /reliability
Obvious choice if you already have an HA database
Best choice for very long ticket lifetimes (Remember me)
Needs CAS 3.3.4 or newer (3.4 would be best)

- Load Balancing

-Load Balancing with Free software

‘Hardware vs. Software Load Balancing

‘N-to-N Cluster

Software Load Balancing

Combination of Apache modules
mod_proxy_ajp

mod_proxy_balancer

Simple to configure:
ProxyPass /cas balancer://mycluster
<Proxy balancer://mycluster>
BalancerMember ajp://serverl:8009/cas

BalancerMember ajp://server2:8009/cas

</Proxy>

Software Load Balancing

-~ [casl

Mod_proxy_ajp Mod_proxy_ajp
Mod_proxy_balancer Mod_proxy_balancer

—

Heartbeat Heartbeat

berveri

Virtual IP: 10.0.0.100

Hardware vs. Software LB

Hardware

High Performance
SSL off-load

Can be expensive

Need multiple devices for HA

Software
Free (as in Speech & Beer)

Very configurable

N-to-N Cluster

Some Other
| WebApp |

Mod_proxy_ajp Mod_proxy_ajp

Heartbeat

Heartbeat

Virtual IP: 10.0.0.100) 3 Virtual IP: 10.0.0.200

N-to-N Cluster

Some Other
[WebApp —_—

Tomcat
Memcached

Heartbeat

A

Virtual IP: 10.0.0.100
Virtual IP: 10.0.0.200

Tomcat Sessions

CAS Clustering wiki page recommends session
replication
You don’t need it

Adds complexity

Session is only used for storing the webflow state

Change WEB-INF /cas-servlet.xml:

<flow:executor id="flowExecutor" registry-
ref="flowRegistry" repository-type="client">

" CAs ar st

USF CAS Cluster (v1)

In service Feb. 2008 — Oct. 2009

Failover Cluster using Heartbeat

Default (non-shared) Ticket Registry
Apache /Tomcat shared by CAS and Shibboleth IdP

Service Registry & Auditing use MySQL

Master-Master Replication

USF CAS Cluster (v1)

ms % Shibboleth.

Mod_proxy_ajp

Sun Directory Server

MySQL

Server1

Mod_proxy_ajp

Tomcat

Sun Directory Server

MySQL

Heartbeat

AN

Virtual IP: 131.247.222.x

Problems with version]l

Location

Servers were in the same (poorly outfitted) server room

Performance
During high-load, CAS & Shibboleth were a bit slow

User Experience

All tickets were lost on failover, forcing users to login
again

USF CAS Cluster (v2)

In production since Oct. 2009

4-node N-to-N Cluster using Heartbeat/Pacemaker
Geographically separated (~1KM apart)
Memcached Ticket Registry (Repcache)

CAS, Shibboleth and other webapps have
‘dedicated’ machines

Service Registry & Auditing on dedicated hardware

Mod_proxy_ajp

Sun Directory Server

Heartbeat

f_@ Shibbolethi—

Mod_proxy_ajp

Sun Directory Server

Heartbeat

Mod_proxy_ajp

Sun Directory Server ¢

Heartbeat

Directory Search

Student Services Datacenter

Virtual IP: 131.247.222.b

Mod_proxy_ajp

Sun Directory Server ¢

Heartbeat

Account
Management Apps

Future Additions

Hardware Load Balancing

Off-campus Disaster-Recovery site
Currently in Tallahassee
Moving it farther North

Persistent Ticket Storage

‘Remember Me’ function is highly requested

JPA or JBOSS Cache with persistent storage

Serveri

Server3

Server2

USF

Audit1

Serverd

Audit2

/

DR-site

ot

ERIC PIERCE
epierce(@usf.edu

http://creativecommons.org/licenses/by-sa/3.0 /us/

