
Leveraging DLM Processors

JA-SIG 2009 Conference, Dallas
Monday, March 2, 2009, 2:00PM-3:00PM

Tim Carroll
University of Illinois

Our JA-SIG Background

  Working with uPortal for 4+ years

  First 2 years were exploring Portals in general
and completing uPortal proof-of-concept

  First Production Implementation 1+ year ago

Our JA-SIG Background

  Rolled out to Incoming Students Fall 2008

  Recently Opened Portal to All Students
–  my.illinois (Urbana-Champaign Campus)

–  my.uic (Chicago Campus)

–  my.uis (Springfield Campus – in progress)

  We are using uPortal 2.6.1 with patches

  We hope to migrate to uPortal 3.x later this
year

Agenda

  Structures, themes, skins. Now processors?

  How do DLM processors change things?

  What is new?

  What remains the same?

  How are DLM processors useful?

Agenda

  The rendering pipeline is very powerful and

somewhat complicated. We will not cover ALL

the pieces in this session

  However, I will highlight several pieces of the

pipeline as they relate to DLM processors

  How many people are familiar with the

rendering pipeline? DLM processors?

The Rendering Pipeline

(a simplified view)

User
Instance

User
Layout

Distributed
Layout

Manager

Structure &
Theme

Transformations

You don’t have to Change!

The processors simply add opportunity

uPortal layouts

  Layout pulled from database as hierarchy of
folders and channels

  The structure transform filters the layout,
rewriting it to be more representative of the
page… Header, Navigation, Content, Footer

  The theme transform converts the filtered
layout to markup like HTML or WML

Still Leverage Classic Interactions

//Set the value of structure or theme stylesheet parameter

uP_sparam={pName}&{pName}={pValue}

uP_tparam={pName}&{pName}={pValue}

//Set value(s) of structure folder or channel attribute(s)

uP_sfattr={aName}&{aName}_folderId={ID}&{aName}_value={aValue}

uP_scattr={aName}&{aName}_channelId={ID}&{aName}_value={aValue}

//Set value(s) of theme channel attribute(s)

uP_tcattr={aName}&{aName}_channelId={ID}&{aName}_value={aValue}

  Communicate with layout manager to maintain
state etc.

  How many people have modified the structure
and/or theme XSLTs?

  How many people are familiar with these
classics interactions?

Business as Usual

  All this stuff is still good to know… it still
applies

  In fact, in many cases, you still use these
techniques to train the structure and theme to
react to DLM processors

  If you don’t use DLM processors, then it is
business as usual… they are not required

  However, you should be aware of what they
can do

  They may come in handy someday

They have for us!

  Accessibility very important at our university (making it

usable or more usable to EVERYONE)

  Our proof-of-concept, produced an accessible theme

using ALM and integrated modes

  This set an expectation with our Steering Team

  Shortly after, uPortal adopted DLM as the future

direction

  This was a good (no great) decision

  But, it was a scary announcement from our standpoint

We had Work to Do

  We wanted to move to DLM to leverage the
benefits

  We did not want to lose the theme
development and accessibility work

  Much of which relied upon the integrated
modes model, where customizations were
made inline

  The user moved portlets around the screen
rather than…

We had Work to Do

  The out-of-box DLM theme was not accessible
and it was not at all like integrated modes

Processors to the Rescue

  DLM Processors Allowed us to accomplish this
quickly

  We developed processors to support the
integrated modes model

  What do I mean by Integrated Modes?

Integrated Modes Demonstration
View Mode

Edit Mode

Add Mode

The Rendering Pipeline with Processors

(a simplified view)

User
Instance

User
Layout

Distributed
Layout

Manager

Structure &
Theme

Transformations

Parameter
Processors

SAX
Processors

So how does it work?

  Step 1 – Implement one or more Interfaces
–  Processors must implement IParameterProcessor

and/or ISAXProcessor
–  IParameterProcessor is a URL handler that gives you

access to current user info through the
setResources(…) and processParameters(…) methods

–  ISaxProcessor implementations can take part in
modifications to the SAX event stream to cause
temporary modifications to layout using the
getCacheKey() and getContentHandler(…) methods

So how does it work?

  Step 1 – Implement one or more Interfaces
–  Processors can also ALSO implement

IOptionalProcessor
–  This interface must be implemented in conjunction

with another DLM processor interface
–  It allows a processor to automatically remove itself

from being the currently selected optional processor
when it has completed its processLayoutParameter
tasks using the isFinished() method

–  Otherwise, a second request has to be made to
disable it

So how does it work?

  Step 2 – Reference the Implementation
–  Spring Configured in properties/dlmContext.xml
–  Fixed Processors run every time the rendering

pipeline cycles (every user request to uPortal)
–  Optional Processors run only when invoked through

the theme using the spring defined method key
(explained on subsequent slides)

<!-- format -->

<beans>

 <bean id='dlmProcessingPipeʻ

class="org.jasig.portal.layout.dlm.processing.ProcessingPipe  
singleton="false"> 
 <property name="fixedProcessors">…</property>  
 <property name=“optionalProcessors">…</property>

 </bean>

</beans>

So how does it work?

  Step 2 – Reference the Implementation
–  Configuring Fixed Processors

<!-- format -->

<property name="fixedProcessors”>

<list>

<bean class=“fully qualified class name" singleton="false"/>

</list>

</property>
 <!-- sample-->

<property name=”fixedProcessors”>

<list>

<bean class=“edu.illinois.my.layout.dlm.processing. UserPublicationInjector”

 singleton="false"/>

</list>

</property>

So how does it work?

  Step 2 – Reference the Implementation
  Configuring Optional Processors:

<!-- format -->

<property name=”optionalProcessors”>

<map>

 <entry key=“some key”> 

 <bean class=“fully qualified class name" singleton="false"/>

 </entry>

</map>

</property>

<!-- sample-->

<property name=”optionalProcessors”>

<map>

 <entry key=“nodeRemove”> 

 <bean class=“edu.illinois.my.layout.dlm.processing.NodeRemove”

 singleton="false"/>

 </entry>

</map>

</property>

So how does it work?

  Step 3 – Modify the theme.xsl to call
optionalProcessors

<!-- format -->

<a href=“uP_dlmPrc=…

{processorName}&uP_dlmParm_...{parmName}…=…
{parmValue}…>

 clickable invokation

<!-- sample -->

 <a class="deletePage" href="{$baseActionURL}?

uP_dlmPrc=nodeRemove&uP_dlmParm_remove_target={@ID}"

 title="Remove Page">

 <img class="domroll {$page-remove-icon-hot}”

 height="16" width="16” alt="Remove Page"

 src="{$page-remove-icon}”/>

So how does it work?

  OR Step 3 – Modify the structure.xsl and/or
theme.xsl to react to SAX style processors that
temporary layout modifications the layout.

<!-- sample -->

<xsl:template match="publications">

 <div id="publications" class="chooser-column">

 <xsl:apply-templates select="grouping/publication"/>

 </div>

</xsl:template>
 <!-- sample -->

<xsl:template match="publication">

 <div class="pub-item">

 <h4><xsl:value-of select="@name"/></h4>

 <p><xsl:value-of select="@description"/></p>

 </div>

</xsl:template>

In Our Integrated Modes Edit Example

In Our Integrated Modes Edit Example

  Provided ALM style user customizations

  These are parameter style

  Require a dlmPrc request from the theme

  The processor is called before the layout is
retrieved again

  Changes made are reflected when it re-
renders to the user through typical cycle

In Our Add Content Example

In Our Add Content Example

  iGoogle like add stuff functions - publication
list, category filter, and portlet search are all
done with processors

  Combines SAX and Parameter style

  Publication content is injected into layout
before it gets to structure transform

  Requires changes to the structure and the
theme to train them how to use the new
injected tags (<category>, <publication>, etc)

The Power of Open Source

  It’s open source!
  You could always customize and accomplish

what you needed
  Yes. But,
  Before you had to change the core of the

framework
  This was a nightmare during upgrades

now it’s easier…

The Power of Pluggable Open Source

  Now, you can create pluggable stand-alone
extensions

  These port from one version to another in a
snap

  And, like portlets we can share them

The Power of Pluggable Open Source

  NodeMoveToPreviousParent
  NodeMoveToNextParent
  NodeMoveToPreviousSibling
  NodeMoveToNextSibling
  NodeWidthSetPercent
  NodeWidthDecreasePercent
  NodeWidthEqualizePercent
  NodeWidthIncreasePercent

  UserPublicationInjector
  UserDockStateInjector
  UserDockStateFilter
  NodeEditRename
  NodeRemove
  NodeFnameZoom
  NodeAddContent
  NodeAddContainer

Important References

  The uP Architecture Overview:
http://www.ja-sig.org/wiki/display/UPC/
uPortal+Architecture+Overview

  The DLM Administrator Guide:
http://www.ja-sig.org/wiki/display/UPM/
02+DLM+Administration+Guide

  The uP Sandbox Integrated Modes Theme:
http://www.ja-sig.org/issues/browse/UPT-315

  Mark Boyd’s Slides from the Denver:
http://www.ja-sig.org/wiki/download/
attachments/6063795/DlmSummer2007.ppt

Closing

These slides will be on the conference website

Q & A

Share Experiences and Ideas

