
Leveraging DLM Processors

JA-SIG 2009 Conference, Dallas
Monday, March 2, 2009, 2:00PM-3:00PM

Tim Carroll
University of Illinois

Our JA-SIG Background

  Working with uPortal for 4+ years

  First 2 years were exploring Portals in general
and completing uPortal proof-of-concept

  First Production Implementation 1+ year ago

Our JA-SIG Background

  Rolled out to Incoming Students Fall 2008

  Recently Opened Portal to All Students
–  my.illinois (Urbana-Champaign Campus)

–  my.uic (Chicago Campus)

–  my.uis (Springfield Campus – in progress)

  We are using uPortal 2.6.1 with patches

  We hope to migrate to uPortal 3.x later this
year

Agenda

  Structures, themes, skins. Now processors?

  How do DLM processors change things?

  What is new?

  What remains the same?

  How are DLM processors useful?

Agenda

  The rendering pipeline is very powerful and

somewhat complicated. We will not cover ALL

the pieces in this session

  However, I will highlight several pieces of the

pipeline as they relate to DLM processors

  How many people are familiar with the

rendering pipeline? DLM processors?

The Rendering Pipeline

(a simplified view)

User
Instance

User
Layout

Distributed
Layout

Manager

Structure &
Theme

Transformations

You don’t have to Change!

The processors simply add opportunity

uPortal layouts

  Layout pulled from database as hierarchy of
folders and channels

  The structure transform filters the layout,
rewriting it to be more representative of the
page… Header, Navigation, Content, Footer

  The theme transform converts the filtered
layout to markup like HTML or WML

Still Leverage Classic Interactions

//Set the value of structure or theme stylesheet parameter
uP_sparam={pName}&{pName}={pValue}
uP_tparam={pName}&{pName}={pValue}
//Set value(s) of structure folder or channel attribute(s)
uP_sfattr={aName}&{aName}_folderId={ID}&{aName}_value={aValue}
uP_scattr={aName}&{aName}_channelId={ID}&{aName}_value={aValue}
//Set value(s) of theme channel attribute(s)
uP_tcattr={aName}&{aName}_channelId={ID}&{aName}_value={aValue}

  Communicate with layout manager to maintain
state etc.

  How many people have modified the structure
and/or theme XSLTs?

  How many people are familiar with these
classics interactions?

Business as Usual

  All this stuff is still good to know… it still
applies

  In fact, in many cases, you still use these
techniques to train the structure and theme to
react to DLM processors

  If you don’t use DLM processors, then it is
business as usual… they are not required

  However, you should be aware of what they
can do

  They may come in handy someday

They have for us!

  Accessibility very important at our university (making it

usable or more usable to EVERYONE)

  Our proof-of-concept, produced an accessible theme

using ALM and integrated modes

  This set an expectation with our Steering Team

  Shortly after, uPortal adopted DLM as the future

direction

  This was a good (no great) decision

  But, it was a scary announcement from our standpoint

We had Work to Do

  We wanted to move to DLM to leverage the
benefits

  We did not want to lose the theme
development and accessibility work

  Much of which relied upon the integrated
modes model, where customizations were
made inline

  The user moved portlets around the screen
rather than…

We had Work to Do

  The out-of-box DLM theme was not accessible
and it was not at all like integrated modes

Processors to the Rescue

  DLM Processors Allowed us to accomplish this
quickly

  We developed processors to support the
integrated modes model

  What do I mean by Integrated Modes?

Integrated Modes Demonstration
View Mode

Edit Mode

Add Mode

The Rendering Pipeline with Processors

(a simplified view)

User
Instance

User
Layout

Distributed
Layout

Manager

Structure &
Theme

Transformations

Parameter
Processors

SAX
Processors

So how does it work?

  Step 1 – Implement one or more Interfaces
–  Processors must implement IParameterProcessor

and/or ISAXProcessor
–  IParameterProcessor is a URL handler that gives you

access to current user info through the
setResources(…) and processParameters(…) methods

–  ISaxProcessor implementations can take part in
modifications to the SAX event stream to cause
temporary modifications to layout using the
getCacheKey() and getContentHandler(…) methods

So how does it work?

  Step 1 – Implement one or more Interfaces
–  Processors can also ALSO implement

IOptionalProcessor
–  This interface must be implemented in conjunction

with another DLM processor interface
–  It allows a processor to automatically remove itself

from being the currently selected optional processor
when it has completed its processLayoutParameter
tasks using the isFinished() method

–  Otherwise, a second request has to be made to
disable it

So how does it work?

  Step 2 – Reference the Implementation
–  Spring Configured in properties/dlmContext.xml
–  Fixed Processors run every time the rendering

pipeline cycles (every user request to uPortal)
–  Optional Processors run only when invoked through

the theme using the spring defined method key
(explained on subsequent slides)

<!-- format -->
<beans>
 <bean id='dlmProcessingPipeʻ

class="org.jasig.portal.layout.dlm.processing.ProcessingPipe  
singleton="false"> 
 <property name="fixedProcessors">…</property>  
 <property name=“optionalProcessors">…</property>

 </bean>
</beans>

So how does it work?

  Step 2 – Reference the Implementation
–  Configuring Fixed Processors

<!-- format -->
<property name="fixedProcessors”>

<list>
 <bean class=“fully qualified class name" singleton="false"/>
</list>

</property> <!-- sample-->
<property name=”fixedProcessors”>

<list>
 <bean class=“edu.illinois.my.layout.dlm.processing. UserPublicationInjector”

 singleton="false"/>
</list>

</property>

So how does it work?

  Step 2 – Reference the Implementation
  Configuring Optional Processors:

<!-- format -->
<property name=”optionalProcessors”>

<map>
 <entry key=“some key”> 

 <bean class=“fully qualified class name" singleton="false"/>
 </entry>
</map>

</property>
<!-- sample-->
<property name=”optionalProcessors”>

<map>
 <entry key=“nodeRemove”> 

 <bean class=“edu.illinois.my.layout.dlm.processing.NodeRemove”
 singleton="false"/>

 </entry>
</map>

</property>

So how does it work?

  Step 3 – Modify the theme.xsl to call
optionalProcessors

<!-- format -->
<a href=“uP_dlmPrc=…

{processorName}&uP_dlmParm_...{parmName}…=…
{parmValue}…>

 clickable invokation

<!-- sample -->
 <a class="deletePage" href="{$baseActionURL}?

uP_dlmPrc=nodeRemove&uP_dlmParm_remove_target={@ID}"
 title="Remove Page">
 <img class="domroll {$page-remove-icon-hot}”
 height="16" width="16” alt="Remove Page"
 src="{$page-remove-icon}”/>

So how does it work?

  OR Step 3 – Modify the structure.xsl and/or
theme.xsl to react to SAX style processors that
temporary layout modifications the layout.

<!-- sample -->
<xsl:template match="publications">
 <div id="publications" class="chooser-column">
 <xsl:apply-templates select="grouping/publication"/>
 </div>
</xsl:template> <!-- sample -->

<xsl:template match="publication">
 <div class="pub-item">
 <h4><xsl:value-of select="@name"/></h4>
 <p><xsl:value-of select="@description"/></p>
 </div>
</xsl:template>

In Our Integrated Modes Edit Example

In Our Integrated Modes Edit Example

  Provided ALM style user customizations

  These are parameter style

  Require a dlmPrc request from the theme

  The processor is called before the layout is
retrieved again

  Changes made are reflected when it re-
renders to the user through typical cycle

In Our Add Content Example

In Our Add Content Example

  iGoogle like add stuff functions - publication
list, category filter, and portlet search are all
done with processors

  Combines SAX and Parameter style

  Publication content is injected into layout
before it gets to structure transform

  Requires changes to the structure and the
theme to train them how to use the new
injected tags (<category>, <publication>, etc)

The Power of Open Source

  It’s open source!
  You could always customize and accomplish

what you needed
  Yes. But,
  Before you had to change the core of the

framework
  This was a nightmare during upgrades

now it’s easier…

The Power of Pluggable Open Source

  Now, you can create pluggable stand-alone
extensions

  These port from one version to another in a
snap

  And, like portlets we can share them

The Power of Pluggable Open Source

  NodeMoveToPreviousParent
  NodeMoveToNextParent
  NodeMoveToPreviousSibling
  NodeMoveToNextSibling
  NodeWidthSetPercent
  NodeWidthDecreasePercent
  NodeWidthEqualizePercent
  NodeWidthIncreasePercent

  UserPublicationInjector
  UserDockStateInjector
  UserDockStateFilter
  NodeEditRename
  NodeRemove
  NodeFnameZoom
  NodeAddContent
  NodeAddContainer

Important References

  The uP Architecture Overview:
http://www.ja-sig.org/wiki/display/UPC/
uPortal+Architecture+Overview

  The DLM Administrator Guide:
http://www.ja-sig.org/wiki/display/UPM/
02+DLM+Administration+Guide

  The uP Sandbox Integrated Modes Theme:
http://www.ja-sig.org/issues/browse/UPT-315

  Mark Boyd’s Slides from the Denver:
http://www.ja-sig.org/wiki/download/
attachments/6063795/DlmSummer2007.ppt

Closing

These slides will be on the conference website

Q & A

Share Experiences and Ideas

