
Implementing CAS

Adam Rybicki
2009 Jasig Conference, Dallas, TX

March 1, 2009

© Copyright Unicon, Inc., 2009. This work is the intellectual property of Unicon, Inc. Permission is granted for this material to be shared for
non-commercial, educational purposes, provided that this copyright statement appears on the reproduced materials and notice is given that
the copying is by permission of Unicon, Inc. To disseminate otherwise or to republish requires written permission from Unicon, Inc.

1. Introduction

2. Problems CAS solves

3. CAS protocol

4. Building from sources

5. Customizing the presentation

6. Authentication handlers

7. CAS-enabling uPortal

8. CAS-enabling Tomcat

Introduction

Who are we?

What is CAS?

Brief history of CAS

Adam’s Involvement with CAS

• Got interested.

• Worked with several clients helping them to CASify
their applications.

• Asked many questions of the CAS mail list

• Wrote a CAS self-study guide for Unicon developers.
(https://confluence.unicon.net/confluence/x/XgZi) (authentication required)

• Answered some questions on the CAS list.

• Currently working with Unicon clients on CAS server
implementations and CAS-enabling their Web
applications.

Introductions

• Who are you?

– Name

– Institution

– Role

– Why interested in CAS?

What is CAS?

• CAS is enterprise single-sign-on for the Web.

– Free

– Open source

– Server implemented in Java

– Clients implemented in a plethora of languages

Some of the people involved as the project
has evolved

• Scott Battaglia

• Shawn Bayern

• Susan Bramhall

• Marc-Antoine Garrigue

• Howard Gilbert

• Dmitriy Kopylenko

• Arnaud Lesueur

• Drew Mazurek

• Benn Oshrin

• Jan Van der Velpen (Velpi)

Many CAS deployers

• Appian Corporation

• Athabasca University

• Azusa Pacific University

• BCcampus

• California Polytechnic Institute

• California State University, Chico

• Campus Crusade for Christ

• Case Western Reserve University

• Columbia

• Employers Direct

• GET-INT

• Hong Kong University of Science and
Technology

• Indiana

• Karlstad University, Sweden

• La Voz de Galicia, Spain

• Memorial University of Newfoundland

• Nagoya University

• NHMCCD

• Northern Arizona University

• Plymouth State University (used with
SunGardHE Luminis)

• Roskilde University

• Rutgers, The State University of New
Jersey

• SunGard HE Luminis

• Simon Fraser University (Vancouver,
B.C.)

• Suffield Academy

• Tollpost Globe AS

… and more

• Universita degli Studi di Parma

• Universite de Bourgogne - France

• Universite de La Rochelle, France

• Universite de Pau et des Pays de
l'Adour, France

• University of Nancy 1, France

• Universite Nancy 2, France

• Universite Pantheon Sorbonne

• Universiteit van Amsterdam

• University of Bristol, England

• University of California Merced

• University of California, Riverside

• University of Crete, Greece

• University of Delaware

• University of Geneva

• University of Hawaii

• University of New Mexico

• University of Rennes1

• University of Technology, Sydney

• Uppsala University

• Valtech

• Virginia Tech

• Yale University

• And likely more not well-
enumerated…

Problems CAS solves

Disparate credentials and name spaces

Too many Web applications dealing with credentials

CAS creates new challenges, too

Multi-sign-on for the Web

At least with one username/password?

LDAP

All applications touch passwords

LDAP

Any compromise leaks primary credentials

LDAP

Adversary then can run wild

LDAP

What to do about this?

• What if there were only one login form, only
one application trusted to touch primary
credentials?

Delete your login forms.

CAS in a nutshell

Browser
Web application

Authenticateswithout sending password

Authenticates

via password (once)

Determinesvalidity of user’sclaimedauthentication

LDAP

Webapps no longer touch passwords

CAS

LDAP

Adversary compromises only single apps

CAS

What about portals?

Need to go get interesting content from different systems.

Portal

Password Replay

Password-
Protected
Service

Password-
Protected
Service

Password-
Protected
Service

Channel

Channel

Channel

PW

PW

PW

PW

PW

PW

PW

PW

PW

PW

PW

CAS Protocol

Tickets and services

Ticket validation

Proxy authentication

How CAS Works

CASWeb
Application

Web
Browser

What about portals?

Need to go get interesting content from different systems.

Portal

Password Replay

Password-
Protected
Service

Password-
Protected
Service

Password-
Protected
Service

Channel

Channel

Channel

PW

PW

PW

PW

PW

PW

PW

PW

PW

PW

PW

Look ma, no password!

• Without a password to replay, how am I going
to authenticate my portal to other
applications?

Proxy CAS

CAS
Web

Applicatio
n

Web
Browser

https listener •

Proxy CAS

• Feature unique to CAS among most of SSO
systems

• Allows some Web applications to act as
proxies on behalf of the users

• Proxied Web applications may act as N-th
level proxies

http://www.jasig.org/cas/protocol

Provided Authentication Handlers
• LDAP

– Fast bind

– Search and bind

• Active Directory
– LDAP

– Kerberos (JAAS)

• JAAS

• JDBC

• RADIUS

• SPNEGO

• Trusted

• X.509 certificates

• Writing a custom authentication handler is easy

CAS – More than Authentication

• Return attributes of logged on users

• Adding support for standards
– OpenID

– SAML

• Single Sign-Out

• RESTful API

• Support for clustering
– Implements distributed ticket registry

– Requires session replication

– Must guarantee cross-server ticket uniqueness

• Services management (white listing)

• Remember me (long-term SSO)

Short Term Goals

• Service Registry Enhancements:

– Self Registration Page

– Service Priority

– LDAP implementation of Service Registry

• InfoCard Support

• Auditing, Logging etc.

• More Internationalization

Long Term Goals
• Re-architecture to support emerging use cases

– Account Management integration

– Password Expiration Policies/Password Change Integration

– SAML, OAuth, OpenID2, etc.

– Levels of assurance / multifactor authentication / second-
level

• Better online / realtime administration
– Installer / configurer

– Information about CAS server (open SSO sessions, etc.)

• Hardening / anti-phishing
http://www.ja-sig.org/wiki/display/CASST/CAS+4+Roadmap

Building from sources

Obtaining the distribution

Requirements and tools

File structure and dependencies

Obtaining the distribution

• http://www.jasig.org/cas/

• SVN at developer.ja-sig.org
svn checkout https://www.ja-
sig.org/svn/cas3/tags/cas-3-3-1-final/
cas-server

• Import and maintain in your source control’s
vendor branch

Requirements to build CAS

• Required

– Java Development Kit 5 or 6

– Maven 2

• Optional

– SVN

– Eclipse (with SVN and Maven plugins)

– EasyEclipse Server (plus Maven plugin)

– Tomcat (gotta test it somewhere!)

File structure and dependencies

• Top-level Project Object Model (POM or
pom.xml) used for all builds and to build
dependent sub-projects.

• The top-level POM builds all the sub-projects,
but by default they are NOT included in the
resulting war file.

• To add dependent sub-projects or additional
external libraries to the war file, you need to
add dependencies to pom.xml in cas-server-
webapp.

Adding a dependency to pom.xml

<!-- ... -->
<dependency>
<groupId>ognl</groupId>
<artifactId>ognl</artifactId>
<version>2.6.9</version>
<scope>runtime</scope>

</dependency>

<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>cas-server-support-ldap</artifactId>
<version>${project.version}</version>

</dependency>

<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.14</version>
<type>jar</type>
<scope>runtime</scope>

</dependency>
<!-- ... -->

Building using Maven overlay method

Requirements

Project Structure

Dependencies

Requirements to build CAS

• Required

– Java Development Kit 5 or 6

– Maven 2

• Optional

– SVN

– Eclipse (with SVN and Maven plugins)

– EasyEclipse Server (plus Maven plugin)

– Tomcat (gotta test it somewhere!)

File structure and dependencies

• Start with just Project Object Model (pom.xml)
in an empty project directory.

• Add files, as needed, to “overlay” those in the
standard WAR file.
– Your own deployerConfigContext.xml would be

the first such file.

– May want to add institutional images and CSS
modifications.

• Add dependencies, as needed, to additional
CAS modules.

Configuring CAS

deployerConfigContext.xml

web.xml

log4j.properties

deployerConfigContext.xml

• Located in
cas-server-webapp/src/main/webapp/WEB-INF

• Deployer-specific configuration file

• This is the first and possibly the only file you have to
modify

• Replace the default authentication handler with the
one your deployment needs

• Add configuration options that your authentication
handler requires

deployerConfigContext.xml example
<bean id="authenticationManager" class="org.jasig.cas.authentication.AuthenticationManagerImpl">
<!-- ... -->
<property name="authenticationHandlers">
<list>
<!--
| This is the authentication handler that authenticates services by means of callback via SSL, thereby validating
| a server side SSL certificate.
+-->

<bean class="org.jasig.cas.authentication.handler.support.HttpBasedServiceCredentialsAuthenticationHandler" />

<bean class="org.jasig.cas.adaptors.ldap.BindLdapAuthenticationHandler">
<property name="filter" value="uid=%u" />
<property name="searchBase" value="ou=People,dc=training" />
<property name="contextSource" ref="contextSource" />

</bean>
</list>

</property>
</bean>

<bean id="contextSource" class="org.jasig.cas.adaptors.ldap.util.AuthenticatedLdapContextSource">
<property name="anonymousReadOnly" value="true" />
<property name="password" value="{password_goes_here}" />
<property name="pooled" value="true" />
<property name="urls">
<list>

<value>ldap://localhost/</value>
</list>

</property>
<property name="userName" value="{username_goes_here}" />
<property name="baseEnvironmentProperties">
<map>
<entry>
<key><value>java.naming.security.authentication</value></key>
<value>simple</value>

</entry>
</map>

</property>
</bean>

web.xml

• Located in
cas-server-webapp/src/main/webapp/WEB-INF

• Standard JEE deployment descriptor

• All endpoints defined as mapped to one servlet

• Uses Spring WebMVC

• This is the “root” of the CAS Web application
configuration

• Re-enable the user-friendly error reporting

• Lists all the Spring context configuration files

• My need to add auditTrailContext.xml

log4j.properties

• Located in
cas-server-webapp/src/main/webapp/WEB-
INF/classes

• Log4j periodically re-reads this file (no Tomcat restart
needed after editing)

• Add fully-qualified path to “cas.log”

• May want to increase the log level for troubleshooting

• Warning: setting the log level to DEBUG or higher will
log users’ passwords

Additional Features

Service registry

Single sign-out

OpenID

Service registry

• Allows to maintain a list of services authorized to authenticate to
CAS

• Off by default

• When turned on, only registered services will be allowed to
authenticate to CAS

• Implementing service registry introduces a database
requirement to CAS (using Hibernate)

• Service registry’s management interface requires authentication
(CAS, of course)

• Must add the service registry URL as the first service to avoid
locking out access to the service registry management interface

Enabling service registry

<bean id="userDetailsService" class="org.acegisecurity.userdetails.memory.InMemoryDaoImpl">
<property name="userMap">

<value>

</value>
</property>

</bean>

Find a section of deployerConfigContext.xml that looks like this:

<bean id="userDetailsService" class="org.acegisecurity.userdetails.memory.InMemoryDaoImpl">
<property name="userMap">

<value>
adam=notused,ROLE_ADMIN

</value>
</property>

</bean>

and make it look like this:

Now user “adam” is authorized to manage services.
Need to enable the database persistence, too.

Single sign-out

• Allows CAS to post a “user signed out”
message to all services that have previously
authenticated to CAS

• On by default

• Services receive the SSOut message as an
HTTP POST to the same endpoint identified
during authentication

• Service Ticket identifies the SSO session that
was terminated

Single sign-out

Web
application CAS

Web
browser

Lo
go

ut
“Y

ou
’ve

 be
en

 lo
gg

ed
 ou

t”

HTTP POST: ST

No communication between
the browser and
Web application!

OpenID (http://openid.net/)

• Allows to use a single digital identity across
the Internet

• Web applications delegate authentication to
an OpenID provider

• CAS can be configured to be an OpenID
provider

• Useful if you have Web applications that
support OpenID authentication and not CAS

CAS-enabling (or CASifying) Web
applications

uPortal

Tomcat Manager

????

uPortal

• Edit properties/security.properties

• Edit webpages/WEB-INF/web.xml

• Edit (uPortal 2.x only)
webpages/stylesheets/org/jasig/portal/channels/CLogin

/html.xsl

• Deploy the changes

• Restart uPortal

Tomcat Manager

• Tomcat Manager relies on container authentication

• This example illustrates how CAS authentication can
replace Tomcat’s BASIC Authentication without
having to write or modify any code

• Locate the Manager applications deployment
descriptor (web.xml)

• Replace its original authentication section with CAS
filter-based authentication

• Add simple authorization

• http://www.ja-sig.org/wiki/x/5yM

Adam Rybicki
arybicki@unicon.net

www.unicon.net

Questions?

