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Overview

• CAS Overview

– Challenges unique to clustering CAS

– How is CAS availability handled today?

• What Is High Availability?

• High Availability vs. Uptime

• CAS Manual Addresses Only Uptime
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High Availability

http://en.wikipedia.org/wiki/High-availability_cluster



Part 1: Clustering CAS According to the 
CAS Manual

• Guarantee ticket uniqueness 

– set host.name in cas.properties

• Distributed ticket registry 

• Tomcat session replication 

– Why this is not really necessary 
• It complicates things considerably 

• It can be eliminated with this simple change: 

in WEB-INF/cas-servlet.xml set
<flow:executor id="flowExecutor" registry-ref="flowRegistry" repository-type="client">



Distributed Ticket Registry

• CAS Manual Only Talks About JBoss Cache 
Ticket Registry

• There are at least 2 other tested options: 

– JPA Ticket Registry 

– Memcache Ticket Registry



JBoss Cache Ticket Registry

• Problems reported using the default JBoss
Cache 1.4.1 (prior to CAS 3.3 release)

• Unlimited number of nodes 

• Default version does not persist the cache 

• Default Registry Cleaner may be OK, and it 
may be OK to run it on all cluster nodes 



Memcache Ticket Registry

• Memcached is a high-performance distributed 
memory object caching system
– Memcached assumes that objects may be reloaded from 

persistent storage when not in cache

– Scales by adding more nodes

– Replication possible with the repcached patch

– If it runs out of memory, it throws away LRU objects

– Many client libraries, including one in Java

• Impossible to run a registry cleaner

• Memcache has its own expiration/cleaner



JPA Ticket Registry

• Surprisingly good throughput shown in testing 
under moderate load (used MySQL in that 
test)

• Concurrent access neatly solved using 
database transactions and Hibernate

• Default registry cleaner insufficient

• Now all you have to do is to make your 
database HA



Other Possible Methods

• Terracotta (http://www.terracotta.org/)

– Sample configuration contributed (http://www.ja-
sig.org/wiki/x/ihjP)

– Requires the use of Terracotta server(s)

• Ehcache (http://ehcache.sourceforge.net/)

– Just like JBoss Cache, does not require dedicated servers

– If uPortal can use it, why not CAS?

• Apache Tribes (http://tomcat.apache.org/tomcat-6.0-
doc/tribes/introduction.html)

– That’s the only publically-accessible documentation

– No dedicated server required



Registry Cleaner Limitations

• Running a cleaner on two cluster nodes may not 
work 

• The current TicketRegistry permits the retrieval of all 
tickets 

• Memcache does not allow to retrieve all entries 

• JBoss registry allows it, but it may take too long to 
process 

• Default cleaner can stall database access because it 
goes through the entire registry in 1 transaction



Part 2: Items Not Addressed by the CAS 
Manual

• Load-balancing

• Fail-Over of CAS

• Single Sign-out

• Authentication Database Availability

• Network

• Power



High Availability

http://en.wikipedia.org/wiki/High-availability_cluster



Load-balancing

• Should Be Easy to Solve With Apache Using 
AJP Protocol

• Allows to offload SSL server processing to 
Apache

• mod_proxy Now Supports AJP

• Simple HTTP Proxy Not Recommended

• mod_jk May Still Be More Flexible than 
mod_proxy



Fail-over of CAS

• Is Apache a Single Point of Failure?

• Can Use Linux-HA to Watch the Apache 
Server 

– Have a "Spare" or "Standby" Server Available 

– Linux-HA Does IP Swap of a Failed Server 

– After The Swap the Standby Activates 

• FOSS!



Authentication Source

• LDAP (using OpenLDAP)
1. Can be dealt with using Linux-HA

2. Can configure CAS to authenticate to several 
LDAP servers

• Kerberos
– JAAS can be configured to authenticate to 

several KDCs

• Database
– Database-specific ☺



Network

• Use Multiple Locations

• Use Multiple Interfaces

• Use Multiple DNS Records

• Use Multiple ISPs



Power

• UPS

• Generators

• Multiple Locations

• Multiple Power Suppliers



Conclusions

• A Complete CAS Cluster Can Be 
Implemented With FOSS
– Yes, there is investment in expertise

– Proprietary software expertise is not free

– Commercial support for FOSS is available

• Do Not Try to Replace Proven Commercial 
Software With FOSS Just Because It's Free

• Try to Follow Methods Proven at Your 
Institution
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