
High Availability CAS

© Copyright Unicon, Inc., 2009. This work is the intellectual property of Unicon, Inc. Permission is granted for this material to be shared for 
non-commercial purposes, provided that this copyright statement appears on the reproduced materials and notice is given that the copying is 
by permission of Unicon, Inc. To disseminate otherwise or to republish requires written permission from Unicon, Inc.

Adam Rybicki, Scott Battaglia
2009 Jasig Conference, Dallas, TX

March 4, 2009



1. Overview

a. Introductions

b. Definitions

2. Part 1: Clustering CAS (uptime)

a) Methods From CAS Manual

b) Other Tried Options

3. Part 2: High Availability (now that 
it stays up)

4. Conclusions



Overview

• CAS Overview

– Challenges unique to clustering CAS

– How is CAS availability handled today?

• What Is High Availability?

• High Availability vs. Uptime

• CAS Manual Addresses Only Uptime



CAS in a nutshell

Browser
Web application

Authenticateswithout sending password

Authenticates

via password (once)

Determinesvalidity of user’sclaimedauthentication

CAS



Single CAS Server

SSL

UI

Authentication

Ticket Registry

Auth DB
(LDAP,

Kerberos,
etc)

Ticket Validation
and Management



Primary with a Backup

Ticket Registry

Auth DB
(LDAP,

Kerberos,
etc)

SSL

UI

Authentication
Ticket Validation
and Management

SSL

UI

Authentication
Ticket Validation
and Management

Primary BackupHeartbeat



Load-Balanced Cluster

Ticket Registry

Auth DB
(LDAP,

Kerberos,
etc)

SSL

UI

Authentication
Ticket Validation
and Management

UI

Authentication
Ticket Validation
and Management

CAS 1

Load Balancer

CAS 2



High Availability

http://en.wikipedia.org/wiki/High-availability_cluster



Part 1: Clustering CAS According to the 
CAS Manual

• Guarantee ticket uniqueness 

– set host.name in cas.properties

• Distributed ticket registry 

• Tomcat session replication 

– Why this is not really necessary 
• It complicates things considerably 

• It can be eliminated with this simple change: 

in WEB-INF/cas-servlet.xml set
<flow:executor id="flowExecutor" registry-ref="flowRegistry" repository-type="client">



Distributed Ticket Registry

• CAS Manual Only Talks About JBoss Cache 
Ticket Registry

• There are at least 2 other tested options: 

– JPA Ticket Registry 

– Memcache Ticket Registry



JBoss Cache Ticket Registry

• Problems reported using the default JBoss
Cache 1.4.1 (prior to CAS 3.3 release)

• Unlimited number of nodes 

• Default version does not persist the cache 

• Default Registry Cleaner may be OK, and it 
may be OK to run it on all cluster nodes 



Memcache Ticket Registry

• Memcached is a high-performance distributed 
memory object caching system
– Memcached assumes that objects may be reloaded from 

persistent storage when not in cache

– Scales by adding more nodes

– Replication possible with the repcached patch

– If it runs out of memory, it throws away LRU objects

– Many client libraries, including one in Java

• Impossible to run a registry cleaner

• Memcache has its own expiration/cleaner



JPA Ticket Registry

• Surprisingly good throughput shown in testing 
under moderate load (used MySQL in that 
test)

• Concurrent access neatly solved using 
database transactions and Hibernate

• Default registry cleaner insufficient

• Now all you have to do is to make your 
database HA



Other Possible Methods

• Terracotta (http://www.terracotta.org/)

– Sample configuration contributed (http://www.ja-
sig.org/wiki/x/ihjP)

– Requires the use of Terracotta server(s)

• Ehcache (http://ehcache.sourceforge.net/)

– Just like JBoss Cache, does not require dedicated servers

– If uPortal can use it, why not CAS?

• Apache Tribes (http://tomcat.apache.org/tomcat-6.0-
doc/tribes/introduction.html)

– That’s the only publically-accessible documentation

– No dedicated server required



Registry Cleaner Limitations

• Running a cleaner on two cluster nodes may not 
work 

• The current TicketRegistry permits the retrieval of all 
tickets 

• Memcache does not allow to retrieve all entries 

• JBoss registry allows it, but it may take too long to 
process 

• Default cleaner can stall database access because it 
goes through the entire registry in 1 transaction



Part 2: Items Not Addressed by the CAS 
Manual

• Load-balancing

• Fail-Over of CAS

• Single Sign-out

• Authentication Database Availability

• Network

• Power



High Availability

http://en.wikipedia.org/wiki/High-availability_cluster



Load-balancing

• Should Be Easy to Solve With Apache Using 
AJP Protocol

• Allows to offload SSL server processing to 
Apache

• mod_proxy Now Supports AJP

• Simple HTTP Proxy Not Recommended

• mod_jk May Still Be More Flexible than 
mod_proxy



Fail-over of CAS

• Is Apache a Single Point of Failure?

• Can Use Linux-HA to Watch the Apache 
Server 

– Have a "Spare" or "Standby" Server Available 

– Linux-HA Does IP Swap of a Failed Server 

– After The Swap the Standby Activates 

• FOSS!



Authentication Source

• LDAP (using OpenLDAP)
1. Can be dealt with using Linux-HA

2. Can configure CAS to authenticate to several 
LDAP servers

• Kerberos
– JAAS can be configured to authenticate to 

several KDCs

• Database
– Database-specific ☺



Network

• Use Multiple Locations

• Use Multiple Interfaces

• Use Multiple DNS Records

• Use Multiple ISPs



Power

• UPS

• Generators

• Multiple Locations

• Multiple Power Suppliers



Conclusions

• A Complete CAS Cluster Can Be 
Implemented With FOSS
– Yes, there is investment in expertise

– Proprietary software expertise is not free

– Commercial support for FOSS is available

• Do Not Try to Replace Proven Commercial 
Software With FOSS Just Because It's Free

• Try to Follow Methods Proven at Your 
Institution



Adam Rybicki
arybicki@unicon.net

www.unicon.net

Questions?


