
Cluster-Enabling Sakai
with Terracotta

Cris J. Holdorph
Software Architect

Unicon, Inc.

JASIG Conference
Dallas, TX

March 3, 2009

© Copyright Unicon, Inc., 2009. Some rights reserved. This work is licensed under a
Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/

http://creativecommons.org/licenses/by-nc-sa/3.0/us/

 2

Agenda

1. Why Terracotta?

2. Current Status

3. Design and Development

4. Running Terracotta-Enabled Sakai

5. Terracotta-Cluster Enabling a Tool

6. Demo

7. Resources

 3

Why Terracotta?

 4

Why Terracotta

● Clustering / Session Failover problem
● What options were explored?

– Container Managed Sessions

– Shared Session Server
● Ehcache
● Database

– REST style (no session data) web architecture

● What problems were uncovered?
– Custom Classloaders

– Performance

– Serializable Objects

 5

Enter Terracotta

● Semi-shared Session Server
– Don't share everything

● Reduced Communication Between Nodes
– “Partitioned Data” feature of Terracotta

● Less Invasive Sakai Changes
– Not every object in Terracotta has to be

Serializable

– Many changes can be done in a Terracotta
configuration file (tc-config.xml)

● Provides a Custom Classloader Solution

 6

Current Status

 7

Current Status

● John Wiley & Sons sponsored Unicon to
develop Terracotta integration with Sakai

● Documentation is in Sakai Confluence
● Original Work done as a feature branch

against Sakai 2.5.x
● Migrated into Sakai Trunk / Kernel Trunk

– This will be Sakai 2.7.x / Kernel 1.1.x if released

● Feature branch (only) contains 2 cluster
enabled tools
– Custom Worksite Setup

– Resources / Citations

 8

Design and Development

 9

Component Manager

● Create Custom Classloader
● Detecting “sakai.cluster.terracotta” System

Property
● Using Custom Classloader if property is set

 10

Code sample

...

class TerracottaClassLoader extends URLClassLoader {

private String classLoaderName;

public TerracottaClassLoader(URL[] urls, ClassLoader

parent, String classLoaderName) { ... }

 public String __tc_getClassLoaderName() {

 return classLoaderName;

 }

...

}

https://source.sakaiproject.org/svn/kernel/trunk/component-manager/src/
main/java/org/sakaiproject/util/TerracottaClassLoader.java

 11

SessionManager

● Make m_sessions a Terracotta Root
● Make MySession and MyLittleSession top level

classes
– Did not want Outer class, SessionManager,

brought into the Terracotta cluster

 12

Partial Session Sharing

● Not all data will be shared
● Original Idea, catch NonPortableException

– Did not work

● New Idea, Tool whitelist
– Only tools in the whitelist will be shared

– Tools not in the whitelist will not be shared

● Final solution, enables gradually enabling
clustering on a tool-by-tool basis

● Even if a tool supports clustering, a system
administrator can turn clustering off for that
tool

 13

Session Maintenance

● SessionManager class has an inner
class/thread called Maintenance
– Responsible for removing expired sessions

● Need to make sure this behavior still works
● Need to make sure this thread/class does not

violate the Terracotta “Partitioned Data”
principle

● Solution: Create a parallel data structure to
loosely track session timeout times along with
session identifiers

 14

UsageSession

● UsageSession tracks with user is on which
server

● UsageSession is both a JVM object and
database record

● Need to detect when a user has failed over to
a new server and update the users
UsageSession object and database record

 15

RequestFilter

● Terracotta requires a lock (transaction) be
obtained to change any data in the cluster

● Original design tried to automatically lock any
clustered object before changing data on that
object

● New design uses a Course Grained lock on
the Session object, obtained and released in
the Sakai RequstFilter

 16

Unit Tests

● Unit Tests for Component Manager before
Component Manager changes were made

● Unit Tests for Session Manager before Session
Manager changes were made

 17

Session Logging

● Code was added to Session Manager to
enable logging of which tools put which
objects into a Sakai Session

● This helps identify
– Heavy users of the Session

– Relative size of a Session

– Which tools are more self referencing

– Which tools tend to reference many other
tools/components

 18

Worksite Setup

● Customized Worksite Setup Tool for John
Wiley & Sons

● Multi-page wizard
● Old Sakai / Velocity based tool
● Lots of inner classes
● Feature branch – Terracotta cluster enabled

 19

Resources / Citations

● Provide a vanilla Sakai tool to demonstrate
Terracotta clusterability

● Citation List creation can be a multi-page
wizard style interaction

● Feature branch – Terracotta cluster enabled

 20

Running a Terracotta-
Enabled Sakai

 21

Building

● Must compile and build the terracotta-config
module

● Must run maven with a special flag
mvn -Dterracotta.enable=true clean installmvn -Dterracotta.enable=true clean install

 22

Running

● Starting Terracotta Server
– tc-config.xml file

– Creating the TIM repository

● JAVA_OPTS for Sakai / Tomcat
– -Dsakai.cluster.terracotta=true -Dtc.install-root=$

{TC_HOME} -Xbootclasspath/p:$
{TC_HOME}/lib/dso-boot/dso-boot-
hotspot_linux_150_14.jar
-Dtc.config=127.0.0.1:9510

– tc-config.xml file

 23

Administration

● Terracotta Administration Console
● Shutting down Sakai / Tomcat
● Shutting down Terracotta Server
● Clearing out the Terracotta Object

“repository”

 24

Terracotta-Cluster Enabling a
 Sakai Tool

 25

Terracotta Enabling a Tool

● Add the tool to the clusterableTools property
● Create a new TIM (Terracotta Integration

Module) for the tool
● Modify the terracotta-config module to know

about the new TIM that was created

 26

Creating a TIM

● Classes for instrumentation
– Any class that will be stored in Terracotta

– Any class that will modify a class stored in
Terracotta

● Determine transient fields for any classes that
will be stored in Terracotta

● Create a mechanism for resolving transient
fields
– Beanshell

– Java method

● Promote inner classes to top level classes

 27

Code sample

<?xml version="1.0" encoding="UTF-8" ?>

<xml-fragment>

 <instrumented-classes>

<include>

 <class-

expression>org.sakaiproject.content.types.FolderType$*</c

lass-expression>

<honor-transient>true</honor-transient>

</include>

<include>

...

https://source.sakaiproject.org/svn/msub/unicon.net/content/branches/ses
sion-clustering-2-5-x/content-tim/src/main/resources/terracotta.xml

 28

Gotchas

● Direct field access
– Prefer setters

● Inner classes
– If the outer class is not going to be stored in

Terracotta, the inner class must be static, however
this does not prevent the outer class from direct
field access (see above)

● Additional Java classes
● Reference classes from another component /

service

 29

Demo

 30

Resources

 31

Resources (1)

● Introduction to Terracotta

– Monday, 11:30 am

● Websites

– Open Source http://www.terracotta.org/

– Commercial http://www.terracottatech.com/

● Website Resources

– Downloads

– Documentation

– Forums

● Book

– The Definitive Guide to Terracotta, ISBN-13:
978-1590599860

http://www.terracotta.org/
http://www.terracottatech.com/

 32

Resources (2)

● Sakai Confluence Terracotta link
http://confluence.sakaiproject.org/confluence/display/TERRA/Home

● Feature Branch subversion link
https://source.sakaiproject.org/svn/msub/unicon.net/distros/branches/session-clustering-2-5-x/

http://confluence.sakaiproject.org/confluence/display/TERRA/Home
https://source.sakaiproject.org/svn/msub/unicon.net/distros/branches/session-clustering-2-5-x/

 33

Questions & Answers

Cris J. Holdorph
Software Architect
Unicon, Inc.

holdorph@unicon.net
www.unicon.net

mailto:holdorph@unicon.net
http://www.unicon.net/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

