
SOA, Web-Services
and

Student Systems

Leo Fernig
University of British Columbia

leo.fernig@ubc.ca

Overview

• The Community Source Student System initiative
– See http://educationcommons.org/projects/display/CSSSS/Home

• Service Oriented Architecture design issues

• Working with XML

• Web service design paradigms

• Web service deployment issues

• Future directions

SOA, Web-Services and Student Systems

SOA, Web-Services and Student Systems

SOAAD issues

• In SOAAD (Service Oriented Architecture Analysis
and Design) there is a real tension between
traditional top-down approaches and contemporary
agile approaches

• The maturity of web service technologies

• The maturity of open source WS components

SOA, Web-Services and Student Systems

A specific example

SOA, Web-Services and Student Systems

The process: end-of term (or session) evaluation for
promotion to the next level (or phase) of an academic
program

The business agnostic services that
support the process:
1. Supplying the student’s academic

record
2. Applying some evaluation rules
3. Plan the next level (or phase)

Working with XML

• Design issues

• Integration with industry schemas

SOA, Web-Services and Student Systems

XML: design issues

• Flexibility of XML schema
– Inheritance
– Composition
– Cardinalities
– Ranges of values (eg country codes)

• Verbosity

SOA, Web-Services and Student Systems

XML: design issues

• XML-Java binding
– Flexibility
– Performance
– JiBX binding framework (http://jibx.sourceforge.net/)

• Governance and management
– Name spaces
– Naming conventions
– Versioning

• Doc/lit versus RPC
– Coarse grained interfaces
– Hiding implementation details
– Stateless
– Emphasis on design

SOA, Web-Services and Student Systems

XML: design issues

• Design patterns
– Russian doll vs Salami vs Venetian blind
– http://www.xfront.com/GlobalVersusLocal.html

SOA, Web-Services and Student Systems

CourseType
Grade

Standing

CourseType
Ref = Grade

Ref = Standing

GradeType

StandingType

ResultType
Grade

Standing

CourseType

Ref = Result

Russian doll Salami Venetian blind

XML: Integration with industry
standards

• Integrating “local” and “global” commerce
– Receiving high-school transcripts
– Trading post-secondary transcripts
– Receiving test scores (SAT TOEFL etc)

• PESC (Post Secondary Education Standards Council)
– http://www.pesc.org/

• IMS global
– http://www.imsglobal.org/

• Alignment strategies

SOA, Web-Services and Student Systems

XML: Alignment strategies

• Use the Venetian blind
design pattern

• Create a new container
object

• Include the learning
unit

• Include the PESC types

SOA, Web-Services and Student Systems

CourseType

LearningUnitType
Learning Unit ID

PESC course type

PESC grade type

XML: design issues
REST and SOAP

• REST: Representational State Transfer
– Flexible
– Simple

• Example
REQUEST: http://www.parts-depot.com/parts

RESPONSE:
<p:Parts

<Part id="00345" xlink:href="http://www.parts-depot.com/parts/00345"/>
<Part id="00346" xlink:href="http://www.parts-depot.com/parts/00346"/>
<Part id="00347" xlink:href="http://www.parts-depot.com/parts/00347"/>
<Part id="00348" xlink:href="http://www.parts-depot.com/parts/00348"/>

</p:Parts>

SOA, Web-Services and Student Systems

XML: design issues
REST and WSDL/SOAP

• REST: Representational State Transfer
– Flexible
– Simple

• Disadvantages
– Service contracts are opaque
– Flow of control is opaque
– Not self-documenting

• If some services are exposed as REST
– Will have to be over and above WSDL’s
– Useful for simple “one of” implementations

SOA, Web-Services and Student Systems

A process agnostic service

• Handlers for processing headers
– Security
– Message logging

• XML – java binding
– Flexibility and performance
– Intelligibility

• Spring AOP (isolate housekeeping)
– Caching
– Logging

• Object Relational Mappings

• Local services

SOA, Web-Services and Student Systems

A process agnostic service: issues

• The need for a standard template
– WS standards are very flexible
– Do not want to re-invent

infrastructure
– Allow developers to concentrate on

business logic

• Managing XML files
– Preponderance of XML

• Global vs local objects
– Canonical XML = global objects
– Local objects do not need schemas

SOA, Web-Services and Student Systems

A business process service:
Orchestration

• The core of agility and flexibility
in SOA

• The differences between this and
a business agnostic service:

– It contains the logic that
expresses a business process

– It consumers other services

SOA, Web-Services and Student Systems

Orchestration

• Hand coding processes

• Using a BPEL (Business Process Execution
Language) engine

• Workflow

• Enterprise Service Bus

SOA, Web-Services and Student Systems

Performance

There will be performance problems to solve. But, we can…

1. Optimize deployment configurations. E.g. put services
behind http load balancers with SSL accelerators.

2. Package operations in a service with a view to minimizing
traffic

3. Use doc/lit to minimizes traffic

And the predictions are that Moore’s law will now hold
between 2010 and 2030.

SOA, Web-Services and Student Systems

Putting it all together…

SOA, Web-Services and Student Systems

Get a
transcript

Evaluate
transcript

Create a new
Level/phase

End of term
evaluation

process

SOA, Web-Services and Student Systems

Get a
transcript

Evaluate
transcript

Create a new
Level/phase

End of term
evaluation

process

View
manager

Function
Controller

Data store Data store Data store

Portal

Business
Processes
(orchestration)

Bus

Business
Agnostic
Services

Data

Deployment: managing a service ecology

SOA, Web-Services and Student Systems

Production

Integration

Development

The future

• Process agnostic systems

• Rule agnostic systems

• Highly flexible and robust deployments

• Intelligent systems that modify there own rule base

SOA, Web-Services and Student Systems

