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Overview

• The Community Source Student System initiative
– See http://educationcommons.org/projects/display/CSSSS/Home

• Service Oriented Architecture design issues

• Working with XML

• Web service design paradigms

• Web service deployment issues

• Future directions
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SOAAD issues

• In SOAAD (Service Oriented Architecture Analysis 
and Design) there is a real tension between 
traditional top-down approaches and contemporary 
agile approaches 

• The maturity of web service technologies

• The maturity of open source WS components
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A specific example
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The process: end-of term (or session) evaluation for
promotion to the next level (or phase) of an academic
program

The business agnostic services that 
support the process:
1. Supplying the student’s academic 

record
2. Applying some evaluation rules
3. Plan the next level (or phase)



Working with XML

• Design issues

• Integration with industry schemas
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XML: design issues

• Flexibility of XML schema
– Inheritance 
– Composition
– Cardinalities
– Ranges of values (eg country codes)

• Verbosity
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XML: design issues

• XML-Java binding
– Flexibility
– Performance
– JiBX binding framework (http://jibx.sourceforge.net/)

• Governance and management
– Name spaces
– Naming conventions
– Versioning

• Doc/lit  versus RPC
– Coarse grained interfaces
– Hiding implementation details
– Stateless
– Emphasis on design
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XML: design issues

• Design patterns
– Russian doll vs Salami vs Venetian blind
– http://www.xfront.com/GlobalVersusLocal.html
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XML: Integration with industry 
standards

• Integrating “local” and “global” commerce
– Receiving high-school transcripts
– Trading post-secondary transcripts
– Receiving test scores (SAT TOEFL etc)

• PESC (Post Secondary Education Standards Council)
– http://www.pesc.org/

• IMS global
– http://www.imsglobal.org/

• Alignment strategies
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XML:  Alignment strategies

• Use the Venetian blind 
design pattern

• Create a new container 
object

• Include the learning 
unit

• Include the PESC types
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XML: design issues
REST and SOAP

• REST: Representational State Transfer
– Flexible
– Simple

• Example
REQUEST: http://www.parts-depot.com/parts

RESPONSE:
<p:Parts

<Part id="00345" xlink:href="http://www.parts-depot.com/parts/00345"/>
<Part id="00346" xlink:href="http://www.parts-depot.com/parts/00346"/>
<Part id="00347" xlink:href="http://www.parts-depot.com/parts/00347"/>
<Part id="00348" xlink:href="http://www.parts-depot.com/parts/00348"/>

</p:Parts>
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XML: design issues
REST and WSDL/SOAP

• REST: Representational State Transfer
– Flexible
– Simple

• Disadvantages
– Service contracts are opaque
– Flow of control is opaque
– Not self-documenting

• If some services are exposed as REST
– Will have to be over and above WSDL’s
– Useful for simple “one of” implementations
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A process agnostic service

• Handlers for processing headers
– Security
– Message logging

• XML – java binding 
– Flexibility and performance
– Intelligibility

• Spring AOP (isolate housekeeping)
– Caching
– Logging

• Object Relational Mappings

• Local services
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A process agnostic service: issues

• The need for a standard template
– WS standards are very flexible
– Do not want to re-invent 

infrastructure
– Allow developers to concentrate on 

business logic

• Managing XML files 
– Preponderance of XML

• Global vs local objects
– Canonical XML = global objects
– Local objects do not need schemas
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A business process service: 
Orchestration

• The core of agility and flexibility 
in SOA

• The differences between this and 
a business agnostic service: 

– It contains the  logic that 
expresses  a business process

– It consumers other services
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Orchestration

• Hand coding processes

• Using a BPEL (Business Process Execution 
Language) engine

• Workflow

• Enterprise Service Bus
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Performance

There will be performance problems to solve.  But, we can…

1. Optimize deployment configurations.  E.g. put services 
behind http load balancers with SSL accelerators.

2. Package operations in a service with a view to minimizing 
traffic

3. Use doc/lit to minimizes traffic

And the predictions are that Moore’s law will now hold 
between 2010 and 2030.
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Putting it all together…
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Deployment: managing a service ecology
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The future

• Process agnostic systems

• Rule agnostic systems

• Highly flexible and  robust deployments

• Intelligent  systems that modify there own rule base
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