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Portlet 1.0 / JSR 168 History

• Java Community Process

http://www.jcp.org/en/jsr/detail?id=168

• Led by Sun and IBM

• 1.0 Final Release Oct 27, 2003

• Interoperability between Portlets / Portals

• Set of APIs defining Portlets
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Portlet 2.0 / JSR 286 History

• Java Community Process
http://jcp.org/en/jsr/detail?id=286

• Led by IBM
– Steven Hepper (sthepper@de.ibm.com)

• Early Draft Review Finished Sept 1, 2006

• Planned final draft by end of 2006

• Planned final release by May 2007

• Intermediate drafts available at
– http://ipc658.inf-swt.uni-jena.de/spec
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JSR 168 Feature Summary

• Lifecycle (init, action, render, destroy)

• Portlet URLs

• Portlet Mode (VIEW, EDIT, HELP)

• Portlet Window States (Normal, Maximize, Minimize)

• Render Parameters

• Portlet Preferences

• Portlet Session

• Portlet Deployment Descriptor (portlet.xml)

– expiration-cache
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JSR 286 Feature Summary

• Major Changes
– Events
– Shared Render Parameters
– Resource Serving
– Portlet Filters
– Caching changes

• Minor Changes
– Window ID
– Namespacing
– Request Dispatcher available to other phases
– Portlet Taglib additions
– Additional CSS classes
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JSR 286 Feature Summary

• Unchanged

– Portlet Modes

– Window States

– Portlet Preferences
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Events and the Portlet Lifecycle

• New Lifecycle Phase – Event Processing

– For each Portal Page request
• Action – called on at most one portlet window

• Event – called on as many portlet windows as 
necessary

• Render – called on up to as many portlet windows that 
are displayed on current page

• Events may be generated during

– Action phase

– Event phase



9

Event Interface

• javax.portlet.EventPortlet interface
– May be implemented by a Portlet
– Contains one method

• void processEvent(EventRequest, EventResponse)

– EventRequest object provides event payload and other typical portlet 
values (mode, windowstate, etc)

– processEvent is similar to processAction for copying 
renderParameters

• Events may be published using methods on ActionResponse or 
EventResponse
– setEvent
– setEvents
– Multiple calls to setEvent and setEvents are allowed
– Event processing order is not guaranteed
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GenericPortlet support for Events

• GenericPortlet will implement the EvenPortlet
interface

• GenericPortlet’s implementation of processEvent will 
dispatch to methods with appropriate runtime 
annotations
@ProcessEvent(Retention=RUNTIME, name=<event name>)

• Typical implementations will be to subclass 
GenericPortlet and provide one method for each 
event type to be handled

• If no method is found GenericPortlet will just copy the 
render parameters from the Request to the Response
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Events and portlet.xml

• Events must be defined in the portlet.xml

• After event definition, each portlet must declare what 
events it will publish or receive

• Portal defined events do not have to be defined in the 
portlet.xml

• Event names must be defined using the W3C QName
standard

• Receiving event names are allowed to end with a * to 
indicate processing all events that start with the 
characters before the *
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Events and JAXB

• JAXB 2.0 must be used to define the Event 
Payload

• JAXB is necessary for interoperability with 
WSRP events

• Implementing event payload class must be 
Serializable and annotated with JAXB 
annotations
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Shared Render Parameters

• Shared Render Parameters may be visible to multiple 
Portlets

• Must be defined in the <portlet-application> of the 
portlet.xml

• Must be declared in each <portlet> section of the 
portlet.xml for a portlet that wants to receive the 
parameter

• Parameter name must follow the W3C QName
specification

• A Portal is allowed to decide which shared render 
parameters will be shared by which portlets
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Resource Serving

• Portlets can create two types of Resource Links
– Direct Links

– Resource URL Links

• Direct Links
– More efficient

– Not guaranteed to go through Portal

– Will not have portal context available

– Should only be used where access control is not needed

• Resource URL Links
– Will go through the ResourceServingPorlet interface
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ResourceServingPortlet

• ResourceServingPortlet interface contains one method
– void serveResource(ResourceRequest, ResourceResponse)

• Portlet can produce content with
– ResourceResponseWriter

– OutputStream

– Delegate with a RequestDispatcher call

• Portal is not allowed to modify content

• Portlet should not modify the portlet state

• May be used for READ-ONLY AJAX calls
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Resource URL Links

• Resource URLs must not cause processAction to be 
invoked

• Portlet creates a ResourceURL to itself with 
createResourceURL

• A ResourceURL to a Portlet that does not implement 
the ResourceServingPortlet interface is an error

• Resource URLs cannot change the Portlet Mode or 
Window State

• Parameters on Resource URL are not render 
parameters
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Portlet Filters

• Modeled after Servlet Filters

• Modify request data by wrapping request

• Modify response data by wrapping response

• Intercept invocation of a portlet after it’s called

• Filters may be chained
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Portlet Filter

• Must implement javax.portlet.Filter interface

• Must provide a public no argument constructor

• init() method will be called on all Filters before 
being called on any Portlets

• destroy() will be called if Filter is removed from 
service

• doFilter() method called if processAction(), 
processEvent(), render(), or shareResource()
would be called on Filtered Portlet
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Portlet Filter

• Must be declared in portlet.xml in a <filter> tag

• A <filter-mapping> element must be declared to specify 
the portlets a Filter is applied to

• Order in portlet.xml matters for multiple filters of the 
same portlet

• Portal containers are expected/allowed to cache the 
“filter chain”

• A Filter may be restricted to specific lifecycle methods 
using the <lifecycle> element in the <filter-mapping> 
definition



20

Caching

• Two Types of Caching

• Expiration Caching

– What existed before with some changes

• Validation Caching

– New for Portlet 2.0 specification
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Expiration Caching

• If no <expiration-cache> value is specified then portlet 
will be treated as always expired

• New <expiration-time> sub element
– Previous time in seconds value goes here

• New <expiration-scope> sub element
– PUBLIC_SCOPE may be shared across users
– PRIVATE_SCOPE may NOT be shared across users
– Default is PRIVATE_SCOPE

• Event dispatching will trigger expiration cache the same 
way Action dispatching does

• <expiration-time> and <expiration-scope> may be set 
programmatically at runtime
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Validation Caching

• Portlet should set an ETAG property and expiration-
cache time when writing render output

• New render requests will only be called after 
expiration-cache time is reached

• Render request will be sent ETAG
• Portlet should examine ETAG and determine if cache 

is still good
– If cache is good, set a new expiry time and NOT render any 

output

• Portlet must set the ETAG, expiry time and caching 
scope before writing any output
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Window ID

• New PortletRequest.getWindowID() method must return the 
Portlet Window ID

• Review from JSR 168

– “Portlet Deployment” (not mentioned directly in specification)

• portlet.xml file information

– Portlet Definition

• Publish time information

– Portlet Entity

• Subscribe time information

– Portlet Window

• Login / Session time information
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Namespacing

• New PortletResponse.getNamespace()
method must provide a unique value for the 
current Portlet Window

• getNamespace() must return the same value 
for the lifetime of the Portlet Window

• Value may be used to prefix Javascript
functions / variables or other items within a 
portal page that must be unique
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Request Dispatcher

• Request Dispatcher may now be called from 
processAction() and the new processEvent
method

• All non-render lifecycle methods will not be 
allowed to be write to any output stream

• Portlet Request Dispatchers must follow any 
Servlet Filters set up
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Portlet Tag Library

• New resourceURL tag
• Existing namespace tag must match the value of 

PortletResponse.getNamespace()
• copyCurrentRenderParameters attribute on Action 

and Render URLs
– A boolean (default false) setting indicating whether all 

current render parameters should be made parameters of 
this URL

• escapeXML attribute on Action, Render and 
Resource URLs
– A boolean (default true) specifying whether characters in 

output should be converted to entity codes
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Additional CSS Classes

• Additional CSS Classes are defined in the 
new document

• Some additional classes currently share 
names with existing classes

• See Appendix C
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What’s Missing?

• Ability to change the state of a portlet with 
AJAX calls

– Forthcoming in JSR 286

• Shared Session Attributes

– Removed from JSR 286

• More CSS classes

• Better Groups and Permissions support
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Questions?

Cris J. Holdorph 

holdorph@unicon.net

www.unicon.net


