
Portlet 2.0 Preview
JSR286 

Cris J. Holdorph
JA-SIG Winter 2006

© Copyright Unicon, Inc., 2006. This work is the intellectual property of Unicon, Inc. Permission is granted for this material to be shared for 
non-commercial, educational purposes, provided that this copyright statement appears on the reproduced materials and notice is given that 
the copying is by permission of Unicon, Inc. To disseminate otherwise or to republish requires written permission from Unicon, Inc.



1.Introduction

2.Portlet 1.0 History

3.Portlet 2.0 History / Future

4.Portlet 1.0 Feature Summary

5.Portlet 2.0 Features

6.Questions and Answers



3

Portlet 1.0 / JSR 168 History

• Java Community Process

http://www.jcp.org/en/jsr/detail?id=168

• Led by Sun and IBM

• 1.0 Final Release Oct 27, 2003

• Interoperability between Portlets / Portals

• Set of APIs defining Portlets



4

Portlet 2.0 / JSR 286 History

• Java Community Process
http://jcp.org/en/jsr/detail?id=286

• Led by IBM
– Steven Hepper (sthepper@de.ibm.com)

• Early Draft Review Finished Sept 1, 2006

• Planned final draft by end of 2006

• Planned final release by May 2007

• Intermediate drafts available at
– http://ipc658.inf-swt.uni-jena.de/spec



5

JSR 168 Feature Summary

• Lifecycle (init, action, render, destroy)

• Portlet URLs

• Portlet Mode (VIEW, EDIT, HELP)

• Portlet Window States (Normal, Maximize, Minimize)

• Render Parameters

• Portlet Preferences

• Portlet Session

• Portlet Deployment Descriptor (portlet.xml)

– expiration-cache



6

JSR 286 Feature Summary

• Major Changes
– Events
– Shared Render Parameters
– Resource Serving
– Portlet Filters
– Caching changes

• Minor Changes
– Window ID
– Namespacing
– Request Dispatcher available to other phases
– Portlet Taglib additions
– Additional CSS classes



7

JSR 286 Feature Summary

• Unchanged

– Portlet Modes

– Window States

– Portlet Preferences



8

Events and the Portlet Lifecycle

• New Lifecycle Phase – Event Processing

– For each Portal Page request
• Action – called on at most one portlet window

• Event – called on as many portlet windows as 
necessary

• Render – called on up to as many portlet windows that 
are displayed on current page

• Events may be generated during

– Action phase

– Event phase



9

Event Interface

• javax.portlet.EventPortlet interface
– May be implemented by a Portlet
– Contains one method

• void processEvent(EventRequest, EventResponse)

– EventRequest object provides event payload and other typical portlet 
values (mode, windowstate, etc)

– processEvent is similar to processAction for copying 
renderParameters

• Events may be published using methods on ActionResponse or 
EventResponse
– setEvent
– setEvents
– Multiple calls to setEvent and setEvents are allowed
– Event processing order is not guaranteed



10

GenericPortlet support for Events

• GenericPortlet will implement the EvenPortlet
interface

• GenericPortlet’s implementation of processEvent will 
dispatch to methods with appropriate runtime 
annotations
@ProcessEvent(Retention=RUNTIME, name=<event name>)

• Typical implementations will be to subclass 
GenericPortlet and provide one method for each 
event type to be handled

• If no method is found GenericPortlet will just copy the 
render parameters from the Request to the Response



11

Events and portlet.xml

• Events must be defined in the portlet.xml

• After event definition, each portlet must declare what 
events it will publish or receive

• Portal defined events do not have to be defined in the 
portlet.xml

• Event names must be defined using the W3C QName
standard

• Receiving event names are allowed to end with a * to 
indicate processing all events that start with the 
characters before the *



12

Events and JAXB

• JAXB 2.0 must be used to define the Event 
Payload

• JAXB is necessary for interoperability with 
WSRP events

• Implementing event payload class must be 
Serializable and annotated with JAXB 
annotations



13

Shared Render Parameters

• Shared Render Parameters may be visible to multiple 
Portlets

• Must be defined in the <portlet-application> of the 
portlet.xml

• Must be declared in each <portlet> section of the 
portlet.xml for a portlet that wants to receive the 
parameter

• Parameter name must follow the W3C QName
specification

• A Portal is allowed to decide which shared render 
parameters will be shared by which portlets



14

Resource Serving

• Portlets can create two types of Resource Links
– Direct Links

– Resource URL Links

• Direct Links
– More efficient

– Not guaranteed to go through Portal

– Will not have portal context available

– Should only be used where access control is not needed

• Resource URL Links
– Will go through the ResourceServingPorlet interface



15

ResourceServingPortlet

• ResourceServingPortlet interface contains one method
– void serveResource(ResourceRequest, ResourceResponse)

• Portlet can produce content with
– ResourceResponseWriter

– OutputStream

– Delegate with a RequestDispatcher call

• Portal is not allowed to modify content

• Portlet should not modify the portlet state

• May be used for READ-ONLY AJAX calls



16

Resource URL Links

• Resource URLs must not cause processAction to be 
invoked

• Portlet creates a ResourceURL to itself with 
createResourceURL

• A ResourceURL to a Portlet that does not implement 
the ResourceServingPortlet interface is an error

• Resource URLs cannot change the Portlet Mode or 
Window State

• Parameters on Resource URL are not render 
parameters



17

Portlet Filters

• Modeled after Servlet Filters

• Modify request data by wrapping request

• Modify response data by wrapping response

• Intercept invocation of a portlet after it’s called

• Filters may be chained



18

Portlet Filter

• Must implement javax.portlet.Filter interface

• Must provide a public no argument constructor

• init() method will be called on all Filters before 
being called on any Portlets

• destroy() will be called if Filter is removed from 
service

• doFilter() method called if processAction(), 
processEvent(), render(), or shareResource()
would be called on Filtered Portlet



19

Portlet Filter

• Must be declared in portlet.xml in a <filter> tag

• A <filter-mapping> element must be declared to specify 
the portlets a Filter is applied to

• Order in portlet.xml matters for multiple filters of the 
same portlet

• Portal containers are expected/allowed to cache the 
“filter chain”

• A Filter may be restricted to specific lifecycle methods 
using the <lifecycle> element in the <filter-mapping> 
definition



20

Caching

• Two Types of Caching

• Expiration Caching

– What existed before with some changes

• Validation Caching

– New for Portlet 2.0 specification



21

Expiration Caching

• If no <expiration-cache> value is specified then portlet 
will be treated as always expired

• New <expiration-time> sub element
– Previous time in seconds value goes here

• New <expiration-scope> sub element
– PUBLIC_SCOPE may be shared across users
– PRIVATE_SCOPE may NOT be shared across users
– Default is PRIVATE_SCOPE

• Event dispatching will trigger expiration cache the same 
way Action dispatching does

• <expiration-time> and <expiration-scope> may be set 
programmatically at runtime



22

Validation Caching

• Portlet should set an ETAG property and expiration-
cache time when writing render output

• New render requests will only be called after 
expiration-cache time is reached

• Render request will be sent ETAG
• Portlet should examine ETAG and determine if cache 

is still good
– If cache is good, set a new expiry time and NOT render any 

output

• Portlet must set the ETAG, expiry time and caching 
scope before writing any output



23

Window ID

• New PortletRequest.getWindowID() method must return the 
Portlet Window ID

• Review from JSR 168

– “Portlet Deployment” (not mentioned directly in specification)

• portlet.xml file information

– Portlet Definition

• Publish time information

– Portlet Entity

• Subscribe time information

– Portlet Window

• Login / Session time information



24

Namespacing

• New PortletResponse.getNamespace()
method must provide a unique value for the 
current Portlet Window

• getNamespace() must return the same value 
for the lifetime of the Portlet Window

• Value may be used to prefix Javascript
functions / variables or other items within a 
portal page that must be unique



25

Request Dispatcher

• Request Dispatcher may now be called from 
processAction() and the new processEvent
method

• All non-render lifecycle methods will not be 
allowed to be write to any output stream

• Portlet Request Dispatchers must follow any 
Servlet Filters set up



26

Portlet Tag Library

• New resourceURL tag
• Existing namespace tag must match the value of 

PortletResponse.getNamespace()
• copyCurrentRenderParameters attribute on Action 

and Render URLs
– A boolean (default false) setting indicating whether all 

current render parameters should be made parameters of 
this URL

• escapeXML attribute on Action, Render and 
Resource URLs
– A boolean (default true) specifying whether characters in 

output should be converted to entity codes



27

Additional CSS Classes

• Additional CSS Classes are defined in the 
new document

• Some additional classes currently share 
names with existing classes

• See Appendix C



28

What’s Missing?

• Ability to change the state of a portlet with 
AJAX calls

– Forthcoming in JSR 286

• Shared Session Attributes

– Removed from JSR 286

• More CSS classes

• Better Groups and Permissions support



29

Questions?

Cris J. Holdorph 

holdorph@unicon.net

www.unicon.net


