
Overview of the Fluid Project

Colin Clark
Inclusive Software Architect,

Adaptive Technology Resource Centre



Responding to Challenges

• Responding to the need to improve UI in 
community source projects
– Accessibilty, usability, internationalization, 

customization, individual needs
• Create both technologies and processes
• Enable skilled design contributions
• Share user interface components
• User interfaces that can flex to accommodate 

institutional and individual needs



How?

• Create common skinning tools
• Build technologies to support flexible, 

reusable UI components
• Create exemplary UI components
• Share and adapt components across 

applications
• Support the design and testing process



Why is this Architecture 
Different?

• Provides a consistent model for UI 
components across applications

• Establishes a single API for configuring 
components

• Provides a consistent way of specifying site-
wide customizations such as skins

• Decouples UI from application logic
• Enables easy switching of components to 

meet diverse user needs



Technical Challenges

• Extremely diverse range of presentation 
technologies: Java, XSLT, and PHP

• Bridging the platform and language gap
• Enable rich and accessible experience
• Support incremental adoption



What is a UI Component?

• A reusable bundle of UI real estate:
– HTML markup or template
– Controller logic
– Metadata describing the role and states of the 

component
– Configurable properties (“bindings”)

• Can be composed of other components
• In our framework, a component is a DHTML

widget managed by a JavaScript & AJAX
container



Core Architecture

• Cross-application skinning system
• Personalized run-time styling
• Component framework
• Repository of shared components
• Semantics and specifications
• Integration



Skinning System

• General way to create skins that work 
across applications

• Customization and branding at 
configuration time

• Extensible
• Doesn’t require the Component 

Framework



Component Framework

• Component model and APIs
– JavaScript, CSS, HTML

• Component container
– JavaScript, AJAX toolkit integration

• Server-side binding layer
– REST-based specification +

implementation
• Runtime Transformation Engine





Component Repository

• Means for sharing components publicly
• Source of high-quality, reusable 

components
• Web-based, RESTful
• Secure, credible, and well-maintained



Integration

• Early and often
• Testing harness at first, project 

integration as soon as possible
• Requires regular collaboration with 

partner projects
• Litmus test of project usefulness



What’s Next?

• Proposal due mid-December
– Goal: define a focused scope based on 

clear resources
• Involve the uPortal community:

– Background documentation
– More conversations with developers and 

UE people


