
Securing Portlets With
Spring Security

John A. Lewis
Chief Software Architect

Unicon, Inc.

JA-SIG Spring 2008 Conference
28 April 2008

© Copyright Unicon, Inc., 2007. Some rights reserved. This work is licensed under a
Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/

http://creativecommons.org/licenses/by-nc-sa/3.0/us/

2

Agenda
● JSR 168 Portlet Security
● Spring Security (aka “Acegi”)
● Spring Portlet Security
● Applying Portlet Security
● Resources
● Questions & Answers

3

JSR 168 Portlet Security

What does the spec
give us to work with?

4

Portal Authentication

● The portal is completely responsible for
authentication
– This means we just use what it gives us – we

don't redirect for authentication purpose

● The JSR 168 PortletRequest class provides
two methods for getting user identity (the
same ones as the Servlet spec)

String getRemoteUser()

Principal getUserPrincipal()

5

Portal Authorization

● Portals generally provide the ability to assign
a set of “Roles” to the User

● The JSR 168 PortletRequest class provides a
method for getting at these roles (the same
ones as the Servlet spec)

boolean isUserInRole(String)

6

Declaring Portal Roles

● Same as declaring roles for Servlet container-
based security

● Include all portal roles that may be used in
web.xml:

...

<security-role>

<role-name>manager</role-name>

</security-role>

...

7

Mapping Portal Roles To Portlet Roles

● In portlet.xml:

<portlet>

<portlet-name>books</portlet-name>

...

<security-role-ref>

<role-name>ADMINISTRATOR</role-name>

<role-link>manager</role-link>

</security-role-ref>

</portlet>

Portlet Role

Portal Role

Warning!
If you are storing your SecurityContext in the PortletSession with
APPLICATION_SCOPE (more on this later), make sure these are the
same in all your <portlet> declarations – the first one to be invoked
on a page will determine the mapping for all portlets in your webapp.

8

Security Constraints

● Require a secure transport in portlet.xml:

<portlet-app>
 ...
 <portlet>
 <portlet-name>accountSummary</portlet-name>
 ...
 </portlet>
 ...
 <security-constraint>
 <display-name>Secure Portlets</display-name>
 <portlet-collection>
 <portlet-name>accountSummary</portlet-name>
 </portlet-collection>
 <user-data-constraint/>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>
 ...
</portlet-app>

9

Other Portlet Security Info

● PortletRequest has a couple other key
security-related methods:

String getAuthType()
Returns name of authentication scheme used
(BASIC_AUTH, CLIENT_CERT_AUTH, custom) or
null if user is not authenticated.

boolean isSecure()
Returns true if the request was made over a
secure channel (such as HTTPS)

String getAuthType()

boolean isSecure()

10

Portlet User Attributes

● Can also use the USER_INFO Map available as
a PortletRequest attribute.

● May contain arbitrary user information:
– user.name.given

– user.bdate

– user.gender

– etc.

● Some portals expose security-related
information here, but this mechanism should
be avoided if possible

11

Spring Security

a.k.a Acegi Security
A quick overview

12

What Is Spring Security?

● Powerful, flexible security framework
for enterprise software

● Emphasis on applications using Spring
● Comprehensive authentication, authorization,

and instance-based access control
● Avoids security code in your business logic –

treats security as a cross-cutting concern
● Built-in support for a wide variety of

authentication and integration standards

13

Spring Security Releases

● Acegi Security (the old name)
– Current Version: 1.0.7

– Initial GA Release: May 2006

– Portlet support in Sandbox

● Spring Security (the new name)
– Current Version: 2.0.0

– Initial GA Release: April 2008

– Portlet support Included

– Changes packaging from org.acegisecurity
to org.springframework.security

14

Applications Are Like Onions

● Spring Security can be applied at multiple
layers in your application:
– Apply security as markup is constructed in the

Rendering Layer using the supplied JSP taglib

– Restrict access to areas of web application in the
Dispatch Layer based on URL pattern-matching

– Secure method invocation on the Service Layer to
ensure calls are from properly authorized user

– Provide Access Control Lists (ACLs) for individual
objects in the Domain Layer

15

Spring Portlet Security

Applying Spring Security to Portlets

16

Portlet Challenges

● Portlets have some key differences
from Servlets:
– No Filters

– Can't treat URLs like Paths

– Multiple Request Phases

● These create some challenges in applying the
normal Spring Security patterns

● So we need some different infrastructure for
wiring Spring Security into our portlet
application

17

Six Main Portlet Security Beans

● PortletProcessingInterceptor
● AuthenticationManager
● AuthenticationDetailsSource
● AuthenticationProvider
● UserDetailsService
● PortletSessionContextIntegrationInterceptor

18

PortletProcessingInterceptor

<bean id="portletProcessingInterceptor"

class="org.springframework.security.ui.portlet.
PortletProcessingInterceptor">

<property name="authenticationManager"
ref="authenticationManager" />

<property name="authenticationDetailsSource"
ref="portletAuthenticationDetailsSource" />

</bean>

● Interceptor that processes portlet requests
for authentication by invoking the configured
AuthenticationManager

● Creates the initial AuthenticationToken from
the PortletRequest security methods

Portlet equivalent of AuthenticationProcessingFilter
used for traditional servlet web applications

19

AuthenticationManager

<sec:authentication-manager
alias="authenticationManager" />

● Use normal provider-based
AuthenticationManager bean

● Declared via special namespace schema:

Can use multiple providers if you are
authenticating from Portlets and Servlets

20

AuthenticationDetailsSource

<bean name=”portletAuthenticationDetailsSource”
class="org.springframework.security.ui.portlet.
PortletPreAuthenticatedAuthenticationDetailsSource">
<property name="mappableRolesRetriever">

<bean class="org.springframework.security.
authoritymapping.SimpleMappableAttributesRetriever">

<property name="mappableAttributes">
<list>

<value>ADMIN</value>
</list>

</property>
</bean>

</property>
</bean>

● Can be used to check isUserInRole(...) to get
list of Portal Roles into the Authentication
Request:

Only needed if we are using Portal Roles for
our security decisions

21

AuthenticationProvider

<bean id="portletAuthenticationProvider"
class="org.springframework.security.providers.preauth.

PreAuthenticatedAuthenticationProvider">

<sec:custom-authentication-provider />

<property name="preAuthenticatedUserDetailsService"
ref="preAuthenticatedUserDetailsService" />

</bean>

● PreAuthenticatedAuthenticationProvider
processes pre-authenticated authentication
request (from PortletProcessingInterceptor)

● A valid PreAuthenticatedAuthenticationToken
with non-null principal & credentials will
succeed

22

UserDetailsService

<bean name="preAuthenticatedUserDetailsService"
class="org.springframework.security.providers.preauth.

PreAuthenticatedGrantedAuthoritiesUserDetailsService" />

● Bean that knows how to populate user details
(including GrantedAuthorities) for the
authenticated user
– PreAuthenticatedGrantedAuthoritiesUserDetailsService

will use purely data contained in the
PreAuthenticatedAuthenticationToken

Can also use any other UserDetailsService that can populate UserDetails
by username, such as JdbcUserDetailsManager or LdapUserDetailsManager

23

PortletSessionContextIntegrationInterceptor

<bean id="portletSessionContextIntegrationInterceptor"
class="org.springframework.security.context.

PortletSessionContextIntegrationInterceptor" />

● Interceptor that retrieves/stores the contents
of the SecurityContextHolder in the active
PortletSession

● Without this, every request would trigger a
full authentication cycle

● Default is to use APPLICATION_SCOPE

Portlet equivalent of HttpSessionContextIntegrationFilter,
used for traditional servlet web applications

24

Using The Two Interceptors

<bean id="portletModeHandlerMapping"
class="org.springframework.web.portlet.handler.

PortletModeHandlerMapping">

<property name="interceptors">
<list>

<ref bean="portletSessionContextIntegrationInterceptor"/>
<ref bean="portletProcessingInterceptor"/>

</list>
</property>

<property name="portletModeMap">
<map>

<entry key="view"><ref bean="viewController"/></entry>
<entry key="edit"><ref bean="editController"/></entry>
<entry key="help"><ref bean="helpController"/></entry>

</map>
</property>

</bean>

● Add them to our Portlet's HandlerMapping:

Warning! This ordering is critical – they
will not work correctly if they are reversed!

25

Applying Portlet Security
To The Rendering Layer

Customizing our markup
based on security information

26

Spring Security JSP TagLib

<%@ taglib prefix="sec"
uri="http://www.springframework.org/security/tags" %>

<p>Username: <sec:authentication property="principal.username"/></p>

<sec:authorize ifAllGranted="ROLE_USER">
<p>You are an authorized user of this system.</p>

</sec:authorize>

<sec:authorize ifAllGranted="ROLE_ADMINISTRATOR">
<p>You are an administrator of this system.</p>

</sec:authorize>

● Allows us to access authentication
information and to check authorizations

● Useful for showing/hiding information or
navigation controls based on security info

Warning: Don't rely on this to restrict access to areas of the application.
Just because navigation doesn't appear in the markup doesn't mean a
clever hacker can't generate a GET/POST that will still get there.

27

Applying Portlet Security
To The Dispatch Layer

Controlling where users can go
in the application

28

Secure Portlet Request Dispatching

● Portlet Requests don't have a path structure,
so we can't use the path-based patterns of
FilterSecurityInterceptor to control access

● Something standard may be added in the
future – perhaps a ConfigAttributeDefinition
for various aspects of Portlet Requests that
we can use as an ObjectDefinitionSource

29

Using a HandlerInterceptor

● Best practice in Spring 2.0 is to build a
custom HandlerInterceptor for your Portlet

● Compare contents of SecurityContextHolder.
getContext(). getAuthentication() with Portlet
Mode, Window State, Render Parameters –
whatever you want to use to determine
permission

● Throw a PortletSecurityException if access is
not permitted, otherwise allow processing to
proceed

30

Using Annotations

● If using Spring 2.5 Annotation-based
Dispatching, use Security Annotations as well
– ApplicationContext entry:

– Annotated method:

<sec:global-method-security secured-annotations="enabled" />

import org.springframework.security.annotation.Secured;

...

@Secured({"ROLE_ADMIN"})

 @RequestMapping(params="action=view")

public String deleteItems(RequestParam("item") int itemId) {

...

31

Applying Portlet Security
To The Service Layer

Making sure Services are invoked by
only by user with proper permissions

32

AccessDecisionManager

<bean id="accessDecisionManager"
class="org.springframework.security.vote.

AffirmativeBased">

<property name="decisionVoters">

<list>
<bean class="org.springframework.security.

vote.RoleVoter" />
<bean class="org.springframework.security.

vote.AuthenticatedVoter" />
</list>

</property>

</bean>

● Standard Spring Security bean for making
decisions about access to resources

33

MethodSecurityInterceptor

<bean id="myService" class="sample.service.MyService">

<sec:intercept-methods
access-decision-manager-ref="accessDecisionManager">

<sec:protect method="sample.service.MyService.*"
access="IS_AUTHENTICATED_FULLY" />

<sec:protect method="sample.service.MyService.add*"
access="ROLE_ADMINISTRATOR" />

<sec:protect method="sample.service.MyService.del*"
access="ROLE_ADMINISTRATOR" />

<sec:protect method="sample.service.MyService.save*"
access="ROLE_ADMINISTRATOR" />

</sec:intercept-methods>

</bean>

34

Applying Portlet Security
To Servlets

Using the whole web/portlet application
 as one secure bundle

35

Bridging The Gap

● We can reuse the Portlet SecurityContext in
getting resources from Servlets in the same
web application

● Useful for securing:
– AJAX Calls

– Dynamic Images

– PDF Reports

● Need to get Portlets and Servlets to share
session data to do this

36

Portlets & Servlets Sharing Session

● Possible according to JSR 168 (PLT 15.4)
– Must be in the same webapp

– Portlet must use APPLICATION_SCOPE

● Sometime tricky in practice
– Portlet requests go thru Portal webapp URL

– Servlet requests go thru Portlet webapp URL

– Session tracking via JSESSIONID Cookie usually
uses URL path to webapp – not shared!

Tomcat 5.5.4 +
On <Connector> element set emptySessionPath=true

37

Apply Servlet Filter Chain

● In web.xml:

<filter>

<filter-name>securityFilterChainProxy</filter-name>

<filter-class>org.springframework.web.filter.
DelegatingFilterProxy</filter-class>

</filter>

<filter-mapping>

<filter-name>securityFilterChainProxy</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>

38

FilterChainProxy

● Since the portal handles authentication, you
only need a few entries in this bean:

<bean id="servletSecurityFilterChainProxy"
class="org.springframework.security.util.

FilterChainProxy">

<sec:filter-chain-map path-type="ant">

<sec:filter-chain pattern="/**"
filters="httpSessionContextIntegrationFilter,

exceptionTranslationFilter,
filterSecurityInterceptor" />

</sec:filter-chain-map>

</bean>

39

HttpSessionContextIntegrationFilter

● If session sharing is working properly, it will
populate the SecurityContextHolder using the
same SecurityContext as the Portlet side

<bean id="httpSessionContextIntegrationFilter"
class="org.springframework.security.context.

HttpSessionContextIntegrationFilter" />

This will only work if PortletSessionContextIntegrationInterceptor
is storing in the APPLICATION_SCOPE of the PortletSession
(which is the default)

40

ExceptionTranslationFilter

● Since we are relying on the Portal for
authentication, then an Exception means that
authentication has already failed

● PreAuthenticatedProcessingFilterEntryPoint
returns SC_FORBIDDEN (HTTP 403 error)

<bean id="exceptionTranslationFilter"
class="org.springframework.security.ui.

ExceptionTranslationFilter">

<property name="authenticationEntryPoint">

<bean class="org.springframework.security.ui.preauth.
PreAuthenticatedProcessingFilterEntryPoint" />

</property>

</bean>

41

FilterSecurityInterceptor

● Secure resource URLs accordingly
● Use the same AuthenticationManager and

AccessDecisionManager as in the portlet
<bean id="filterSecurityInterceptor"

class="org.springframework.security.intercept.web.
FilterSecurityInterceptor">

<property name="authenticationManager"
ref="authenticationManager" />

<property name="accessDecisionManager"
ref="accessDecisionManager" />

<property name="objectDefinitionSource">

<sec:filter-invocation-definition-source>

<sec:intercept-url pattern="/resources/**"
access="IS_AUTHENTICATED_FULLY" />

</sec:filter-invocation-definition-source>

</property>

</bean>

42

Resources

Places to go to actually use this stuff!

43

Resources

● Spring Security 2.0 Website
– http://static.springframework.org/spring-security/site/

● Sample Applications
– Small sample included in Spring Security distro

– Bigger sample on the Spring Portlet Wiki

http://opensource.atlassian.com/confluence/spring/display/JSR168/

http://static.springframework.org/spring-security/site/
http://opensource.atlassian.com/confluence/spring/x/BwD
http://opensource.atlassian.com/confluence/spring/display/JSR168/

44

Questions & Answers

John A. Lewis
Chief Software Architect
Unicon, Inc.

jlewis@unicon.net
www.unicon.net

mailto:jlewis@unicon.net
http://www.unicon.net/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

