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JSR 168 Portlet Security

What does the spec
give us to work with?
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Portal Authentication

● The portal is completely responsible for 
authentication
– This means we just use what it gives us – we 

don't redirect for authentication purpose

● The JSR 168 PortletRequest class provides 
two methods for getting user identity (the 
same ones as the Servlet spec)

String getRemoteUser() 

Principal getUserPrincipal() 
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Portal Authorization

● Portals generally provide the ability to assign 
a set of “Roles” to the User

● The JSR 168 PortletRequest class provides a 
method for getting at these roles (the same 
ones as the Servlet spec)

boolean isUserInRole(String)
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Declaring Portal Roles

● Same as declaring roles for Servlet container-
based security

● Include all portal roles that may be used in 
web.xml:

...

<security-role>

<role-name>manager</role-name>

</security-role>

...
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Mapping Portal Roles To Portlet Roles

● In portlet.xml:

<portlet>

<portlet-name>books</portlet-name>

...

<security-role-ref>

<role-name>ADMINISTRATOR</role-name>

<role-link>manager</role-link>

</security-role-ref>

</portlet>

Portlet Role

Portal Role

Warning!
If you are storing your SecurityContext in the PortletSession with 
APPLICATION_SCOPE (more on this later), make sure these are the 
same in all your <portlet> declarations – the first one to be invoked 
on a page will determine the mapping for all portlets in your webapp.
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Security Constraints

● Require a secure transport in portlet.xml:

<portlet-app>
    ...
    <portlet>
        <portlet-name>accountSummary</portlet-name>
        ...
    </portlet>
    ...
    <security-constraint>
         <display-name>Secure Portlets</display-name>
         <portlet-collection>
             <portlet-name>accountSummary</portlet-name>
        </portlet-collection>
        <user-data-constraint/>
            <transport-guarantee>CONFIDENTIAL</transport-guarantee>
        </user-data-constraint>
    </security-constraint>
    ...
</portlet-app>
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Other Portlet Security Info

● PortletRequest has a couple other key 
security-related methods:

String getAuthType()
Returns name of authentication scheme used 
(BASIC_AUTH, CLIENT_CERT_AUTH, custom) or 
null if user is not authenticated.

boolean isSecure()
Returns true if the request was made over a 
secure channel (such as HTTPS)

String getAuthType()

boolean isSecure()
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Portlet User Attributes

● Can also use the USER_INFO Map available as 
a PortletRequest attribute.

● May contain arbitrary user information:
– user.name.given

– user.bdate

– user.gender

– etc.

● Some portals expose security-related 
information here, but this mechanism should 
be avoided if possible



11

Spring Security

a.k.a Acegi Security
A quick overview
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What Is Spring Security?

● Powerful, flexible security framework 
for enterprise software

● Emphasis on applications using Spring
● Comprehensive authentication, authorization, 

and instance-based access control
● Avoids security code in your business logic – 

treats security as a cross-cutting concern
● Built-in support for a wide variety of 

authentication and integration standards
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Spring Security Releases

● Acegi Security (the old name)
– Current Version: 1.0.7

– Initial GA Release: May 2006

– Portlet support in Sandbox

● Spring Security (the new name)
– Current Version: 2.0.0

– Initial GA Release: April 2008

– Portlet support Included

– Changes packaging from org.acegisecurity 
to org.springframework.security
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Applications Are Like Onions

● Spring Security can be applied at multiple 
layers in your application:
– Apply security as markup is constructed in the 

Rendering Layer using the supplied JSP taglib

– Restrict access to areas of web application in the 
Dispatch Layer based on URL pattern-matching

– Secure method invocation on the Service Layer to 
ensure calls are from properly authorized user

– Provide Access Control Lists (ACLs) for individual 
objects in the Domain Layer
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Spring Portlet Security

Applying Spring Security to Portlets
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Portlet Challenges

● Portlets have some key differences 
from Servlets:
– No Filters

– Can't treat URLs like Paths

– Multiple Request Phases

● These create some challenges in applying the 
normal Spring Security patterns

● So we need some different infrastructure for 
wiring Spring Security into our portlet 
application
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Six Main Portlet Security Beans

● PortletProcessingInterceptor
● AuthenticationManager
● AuthenticationDetailsSource
● AuthenticationProvider
● UserDetailsService
● PortletSessionContextIntegrationInterceptor
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PortletProcessingInterceptor

<bean id="portletProcessingInterceptor"

class="org.springframework.security.ui.portlet.
PortletProcessingInterceptor">

<property name="authenticationManager"
ref="authenticationManager" />

<property name="authenticationDetailsSource"
ref="portletAuthenticationDetailsSource" />

</bean>

● Interceptor that processes portlet requests 
for authentication by invoking the configured 
AuthenticationManager

● Creates the initial AuthenticationToken from 
the PortletRequest security methods

Portlet equivalent of AuthenticationProcessingFilter 
used for traditional servlet web applications
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AuthenticationManager

<sec:authentication-manager 
alias="authenticationManager" />

● Use normal provider-based 
AuthenticationManager bean

● Declared via special namespace schema:

Can use multiple providers if you are 
authenticating from Portlets and Servlets
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AuthenticationDetailsSource

<bean name=”portletAuthenticationDetailsSource”
class="org.springframework.security.ui.portlet.
PortletPreAuthenticatedAuthenticationDetailsSource">
<property name="mappableRolesRetriever">

<bean class="org.springframework.security.
authoritymapping.SimpleMappableAttributesRetriever">

<property name="mappableAttributes">
<list>

<value>ADMIN</value>
</list>

</property>
</bean>

</property>
</bean>

● Can be used to check isUserInRole(...) to get 
list of Portal Roles into the Authentication 
Request: 

Only needed if we are using Portal Roles for 
our security decisions



21

AuthenticationProvider

<bean id="portletAuthenticationProvider"
class="org.springframework.security.providers.preauth.

PreAuthenticatedAuthenticationProvider">

<sec:custom-authentication-provider />

<property name="preAuthenticatedUserDetailsService"
ref="preAuthenticatedUserDetailsService" />

</bean>

● PreAuthenticatedAuthenticationProvider 
processes pre-authenticated authentication 
request (from PortletProcessingInterceptor)

● A valid PreAuthenticatedAuthenticationToken 
with non-null principal & credentials will 
succeed
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UserDetailsService

<bean name="preAuthenticatedUserDetailsService"
class="org.springframework.security.providers.preauth.

PreAuthenticatedGrantedAuthoritiesUserDetailsService" />

● Bean that knows how to populate user details 
(including GrantedAuthorities) for the 
authenticated user
– PreAuthenticatedGrantedAuthoritiesUserDetailsService 

will use purely data contained in the 
PreAuthenticatedAuthenticationToken

Can also use any other UserDetailsService that can populate UserDetails 
by username, such as JdbcUserDetailsManager or LdapUserDetailsManager



23

PortletSessionContextIntegrationInterceptor

<bean id="portletSessionContextIntegrationInterceptor"
class="org.springframework.security.context.

PortletSessionContextIntegrationInterceptor" />

● Interceptor that retrieves/stores the contents 
of the SecurityContextHolder in the active 
PortletSession

● Without this, every request would trigger a 
full authentication cycle

● Default is to use APPLICATION_SCOPE

Portlet equivalent of HttpSessionContextIntegrationFilter, 
used for traditional servlet web applications
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Using The Two Interceptors

<bean id="portletModeHandlerMapping"
class="org.springframework.web.portlet.handler.

PortletModeHandlerMapping">

<property name="interceptors">
<list>

<ref bean="portletSessionContextIntegrationInterceptor"/>
<ref bean="portletProcessingInterceptor"/>

</list>
</property>

<property name="portletModeMap">
<map>

<entry key="view"><ref bean="viewController"/></entry>
<entry key="edit"><ref bean="editController"/></entry>
<entry key="help"><ref bean="helpController"/></entry>

</map>
</property>

</bean>

● Add them to our Portlet's HandlerMapping:

Warning! This ordering is critical – they 
will not work correctly if they are reversed!
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Applying Portlet Security
To The Rendering Layer

Customizing our markup 
based on security information
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Spring Security JSP TagLib

<%@ taglib prefix="sec" 
uri="http://www.springframework.org/security/tags" %>

<p>Username: <sec:authentication property="principal.username"/></p>

<sec:authorize ifAllGranted="ROLE_USER">
<p>You are an authorized user of this system.</p>

</sec:authorize>

<sec:authorize ifAllGranted="ROLE_ADMINISTRATOR">
<p>You are an administrator of this system.</p>

</sec:authorize>

● Allows us to access authentication 
information and to check authorizations

● Useful for showing/hiding information or 
navigation controls based on security info

Warning: Don't rely on this to restrict access to areas of the application.  
Just because navigation doesn't appear in the markup doesn't mean a 
clever hacker can't generate a GET/POST that will still get there.
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Applying Portlet Security
To The Dispatch Layer

Controlling where users can go
in the application 
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Secure Portlet Request Dispatching

● Portlet Requests don't have a path structure, 
so we can't use the path-based patterns of 
FilterSecurityInterceptor to control access

● Something standard may be added in the 
future – perhaps a ConfigAttributeDefinition 
for various aspects of Portlet Requests that 
we can use as an ObjectDefinitionSource
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Using a HandlerInterceptor

● Best practice in Spring 2.0 is to build a 
custom HandlerInterceptor for your Portlet

● Compare contents of SecurityContextHolder. 
getContext(). getAuthentication() with Portlet 
Mode, Window State, Render Parameters – 
whatever you want to use to determine 
permission

● Throw a PortletSecurityException if access is 
not permitted, otherwise allow processing to 
proceed
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Using Annotations

● If using Spring 2.5 Annotation-based 
Dispatching, use Security Annotations as well
– ApplicationContext entry:

– Annotated method:

<sec:global-method-security secured-annotations="enabled" />

import org.springframework.security.annotation.Secured;

...

@Secured({"ROLE_ADMIN"})

   @RequestMapping(params="action=view")

public String deleteItems(RequestParam("item") int itemId) {

...
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Applying Portlet Security
To The Service Layer

Making sure Services are invoked by 
only by user with proper permissions
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AccessDecisionManager

<bean id="accessDecisionManager"
class="org.springframework.security.vote.

AffirmativeBased">

<property name="decisionVoters">

<list>
<bean class="org.springframework.security.

vote.RoleVoter" />
<bean class="org.springframework.security.

vote.AuthenticatedVoter" />
</list>

</property>

</bean>

● Standard Spring Security bean for making 
decisions about access to resources
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MethodSecurityInterceptor

<bean id="myService" class="sample.service.MyService">

<sec:intercept-methods
access-decision-manager-ref="accessDecisionManager">

<sec:protect method="sample.service.MyService.*" 
access="IS_AUTHENTICATED_FULLY" />

<sec:protect method="sample.service.MyService.add*"
access="ROLE_ADMINISTRATOR" />

<sec:protect method="sample.service.MyService.del*"
access="ROLE_ADMINISTRATOR" />

<sec:protect method="sample.service.MyService.save*"
access="ROLE_ADMINISTRATOR" />

</sec:intercept-methods>

</bean>
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Applying Portlet Security
To Servlets

Using the whole web/portlet application 
 as one secure bundle
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Bridging The Gap

● We can reuse the Portlet SecurityContext in 
getting resources from Servlets in the same 
web application

● Useful for securing:
– AJAX Calls

– Dynamic Images

– PDF Reports

● Need to get Portlets and Servlets to share 
session data to do this
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Portlets & Servlets Sharing Session

● Possible according to JSR 168 (PLT 15.4)
– Must be in the same webapp

– Portlet must use APPLICATION_SCOPE

● Sometime tricky in practice
– Portlet requests go thru Portal webapp URL

– Servlet requests go thru Portlet webapp URL

– Session tracking via JSESSIONID Cookie usually 
uses URL path to webapp – not shared!

Tomcat 5.5.4 +
On <Connector> element set  emptySessionPath=true
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Apply Servlet Filter Chain

● In web.xml:

<filter>

<filter-name>securityFilterChainProxy</filter-name>

<filter-class>org.springframework.web.filter.
DelegatingFilterProxy</filter-class>

</filter>

<filter-mapping>

<filter-name>securityFilterChainProxy</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>
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FilterChainProxy

● Since the portal handles authentication, you 
only need a few entries in this bean:

<bean id="servletSecurityFilterChainProxy"
class="org.springframework.security.util.

FilterChainProxy">

<sec:filter-chain-map path-type="ant">

<sec:filter-chain pattern="/**"
filters="httpSessionContextIntegrationFilter,

exceptionTranslationFilter,
filterSecurityInterceptor" />

</sec:filter-chain-map>

</bean>
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HttpSessionContextIntegrationFilter

● If session sharing is working properly, it will 
populate the SecurityContextHolder using the 
same SecurityContext as the Portlet side

<bean id="httpSessionContextIntegrationFilter"
class="org.springframework.security.context.

HttpSessionContextIntegrationFilter" />

This will only work if PortletSessionContextIntegrationInterceptor 
is storing in the APPLICATION_SCOPE of the PortletSession
(which is the default)
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ExceptionTranslationFilter

● Since we are relying on the Portal for 
authentication, then an Exception means that 
authentication has already failed

● PreAuthenticatedProcessingFilterEntryPoint 
returns SC_FORBIDDEN (HTTP 403 error)

<bean id="exceptionTranslationFilter"
class="org.springframework.security.ui.

ExceptionTranslationFilter">

<property name="authenticationEntryPoint">

<bean class="org.springframework.security.ui.preauth.
PreAuthenticatedProcessingFilterEntryPoint" />

</property>

</bean>
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FilterSecurityInterceptor

● Secure resource URLs accordingly
● Use the same AuthenticationManager and 

AccessDecisionManager as in the portlet
<bean id="filterSecurityInterceptor"

class="org.springframework.security.intercept.web.
FilterSecurityInterceptor">

<property name="authenticationManager"
ref="authenticationManager" />

<property name="accessDecisionManager"
ref="accessDecisionManager" />

<property name="objectDefinitionSource">

<sec:filter-invocation-definition-source>

<sec:intercept-url pattern="/resources/**" 
access="IS_AUTHENTICATED_FULLY" />

</sec:filter-invocation-definition-source>

</property>

</bean>
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Resources

Places to go to actually use this stuff!
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Resources

● Spring Security 2.0 Website
– http://static.springframework.org/spring-security/site/

● Sample Applications
– Small sample included in Spring Security distro

– Bigger sample on the Spring Portlet Wiki

http://opensource.atlassian.com/confluence/spring/display/JSR168/

http://static.springframework.org/spring-security/site/
http://opensource.atlassian.com/confluence/spring/x/BwD
http://opensource.atlassian.com/confluence/spring/display/JSR168/
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Questions & Answers

John A. Lewis
Chief Software Architect
Unicon, Inc.

jlewis@unicon.net
www.unicon.net

mailto:jlewis@unicon.net
http://www.unicon.net/
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