
Java Portlet 2.0
(JSR 286 Spec)

John A. Lewis
Chief Software Architect

Unicon, Inc.

JA-SIG Conference
28 April 2008

© Copyright Unicon, Inc., 2007. Some rights reserved. This work is licensed under a
Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/

http://creativecommons.org/licenses/by-nc-sa/3.0/us/

2

Agenda

1. Portlet Specs and Features

2. JSR 286 Major Changes

3. JSR 286 Minor Changes

4. Questions and Answers

Special thanks to Cris Holdorph from Unicon
for helping to prepare this material.

3

Portlet Specs & Features

4

Portlet 1.0 / JSR 168 History

– Java Community Process
http://www.jcp.org/en/jsr/detail?id=168

– Led by Sun and IBM

– Started: 29 January 2002

– Released: 27 October 2003

– Reference Implementation: Apache Pluto

– Interoperability between Portlets / Portals

– Set of APIs defining Portlets

– Linked to WSRP 1.0 Specification

http://www.jcp.org/en/jsr/detail?id=168

5

Portlet 2.0 / JSR 286 History

– Java Community Process
http://jcp.org/en/jsr/detail?id=286

– Led by IBM
● Steven Hepper (sthepper@de.ibm.com)

– Started: 29 November 2005

– Final Approval Ballot: 3 March 2008 (Passed)

– Waiting for TCK and Reference Implementation
(Pluto 2.0)

– Linked to WSRP 2.0 Specification

http://jcp.org/en/jsr/detail?id=286
mailto:sthepper@de.ibm.com

6

JSR 168 Feature Summary

– Lifecycle (init, action, render, destroy)

– Portlet URLs (Render URL, Action URL)

– Portlet Mode (View, Edit, Help)

– Window States (Normal, Maximize, Minimize)

– Render Parameters

– Portlet Preferences

– Portlet Session

– Portlet Deployment Descriptor (portlet.xml)
● expiration-cache

7

JSR 286 – Major Changes

● Portlet Events
● Public Render Parameters
● Resource Serving
● Portlet Filters
● Caching Changes

8

JSR 286 – Minor Changes

● Window ID
● Namespacing
● Lifecycle Phase

Request Attribute
● RENDER_HEADERS

Sub-phase
● Portlet Cookies
● Setting Markup Head

Elements
● Next Portlet Modes

● Portlet Tag Library
Changes

● Additional CSS
Classes

● Portlet Request
Dispatcher Changes

● Portlet Resource
Bundle Changes

● Portlet Container
Runtime Options

9

JSR 286 - Unchanged

● Portlet Modes
● Window States
● Portlet Preferences
● Portlet Security
● User Information

10

Portlet Events

11

Events and the Portlet Lifecycle

● New Lifecycle Phase: Event Processing
● For each overall portal page request:

– Action Phase – called on at most one portlet
window

– Event Phase – called on as many portlet windows
as necessary

– Render Phase – called on up to as many portlet
windows that are displayed on current page

● Events may be generated during Action Phase
or Event Phase – not during Render Phase

12

Diagram from Java™ Portlet Specification, Version 2.0 Public Draft , Rev. 19

13

EventPortlet Interface

● javax.portlet.EventPortlet Interface
– May be implemented by a Portlet

– Contains one method:
void processEvent(EventRequest, EventResponse)

– EventRequest object provides event payload and
other typical portlet info (mode, window state,
etc)

– processEvent is similar to processAction for
copying renderParameters

14

Publishing Events

● Events may be published using methods on
ActionResponse or EventResponse
– setEvent or setEvents

– Multiple calls to setEvent and setEvents are
allowed

● Event delivery and processing order
is not guaranteed

15

Event Definitions

● Events must be defined in portlet.xml
● After event definition, each portlet must

declare what events it will publish or receive
● Portal-defined events do not have to be

defined in portlet.xml
● Event naming:

– Must use the W3C QName standard

– Receiving events can end with a * wildcard

– Can declare default-event-namespace in
portlet.xml and just use local names

16

Events and JAXB

● JAXB 2.0 must be used to define the Event
Payload

● JAXB is necessary for interoperability with
WSRP events

● Implementing event payload class must be
Serializable and annotated with JAXB
annotations

17

Public Render Parameters

18

Public Render Parameters

● May be visible to multiple Portlets & Webapps
● Managed in portlet.xml

– Defined in the <portlet-application>

– Declared in each <portlet> that wants it

● Name must follow the W3C Qname spec –
can declare a default-name-space

● A portal can decide which public render
parameters will be shared by which portlets

19

Resource Serving

20

Resource Serving

● Portlets can create two types of Resource
Links
– Direct Links (not new)
– Resource URL Links (new!)

● Direct Links
– More efficient
– Not guaranteed to go through Portal
– Will not have portal context available
– No portal access control

● Resource URL Links
– Will go through the ResourceServingPortlet

interface

21

ResourceServingPortlet

● ResourceServingPortlet Interface
void serveResource
(ResourceRequest, ResourceResponse)

● Portlet can produce content with
– ResourceResponseWriter

– OutputStream

– Delegate with a RequestDispatcher call

● Portal is not allowed to modify content
● Portlet should not use HTTP GET for state

change use HTTP POST/PUT/DELETE instead

22

Resource URLs

● Portlet creates a ResourceURL to itself with
PortletResponse.createResourceURL()

● ResourceURL only valid if a Portlet
implements ResourceServingPortlet

● Does not cause processAction to be invoked
● Cannot change Portlet Mode or Window State
● All current render parameters will be included
● New parameters set do not become render

parameters

23

Cacheability of Resources

● ResourceURL can control the “cacheability” of
the resource via the setCacheability method:
– FULL – The most cacheable – URL does not need

to contain state of the page, the current render
parameters, portlet mode, or window state

– PORTLET – URL needs portlet state (render
parameters, portlet mode, and window state), but
does not need the state of the rest of the page

– PAGE – The least cacheable – URL needs
complete state of page and portlet

● Cannot create URLs with more detail in
Resource requests from URLs with less detail

24

Other Resource Information

● ResourceRequest provides access to a mix of
Portlet information and information unique to
Resources:
– Portlet Mode, Window State, and Render

Parameters of the requesting portlet are provided

– Full access to HTTP headers
(can set on response as well)

– HTTP Method of the request

– The Resource ID set on the Resource URL (if any)

– The ETAG for cache validation

25

Portlet Filters

26

Portlet Filters

● Modeled after Servlet Filters
● Modify request data by wrapping request
● Modify response data by wrapping response
● Intercept invocation of a portlet before and

after it is called
● Filters may be chained

27

Portlet Filter Interface

● Must implement javax.portlet.Filter interface
● Must provide a public no-arg constructor
● init() method will be called on all Filters

before being called on any Portlets
● destroy() will be called if Filter is removed

from service
● doFilter() method called if processAction(),

processEvent(), render(), or serveResource()
would be called on Filtered Portlet

28

Declaring Portlet Filters

● Declared in portlet.xml in <filter> element

● <filter-mapping> element must specify the
applicable portlets

● Restrict to specific lifecycle methods using the
<lifecycle> element in <filter-mapping>

● Order in portlet.xml matters for multiple
filters of the same portlet

● Portlet containers are expected/allowed to
cache the “filter chain”

29

Wrapping Requests/Reponses

● New wrapper classes provided for all request
and response objects for use with Filters:
– ActionRequestWrapper

ActionResponseWrapper

– EventRequestWrapper
EventResponseWrapper

– RenderRequestWrapper
RenderResponseWrapper

– ResourceRequestWrapper
ResourceResponseWrapper

30

Portlet Caching

31

Caching

● Two Types:
– Expiration Caching

● What existed before with some changes
– Validation Caching

● New for extension of expiration caching

● Caching is now applied to both the Render
and Resource lifecycle phases

32

Expiration Caching

● If no <expiration-cache> value is specified
then portlet will be treated as always expired

● New <expiration-time> sub-element

– Previous time-in-seconds value goes here

● New <expiration-scope> sub element

– PUBLIC_SCOPE may be shared across users

– PRIVATE_SCOPE may NOT be shared (default)

● Action or Event request will expire cache
● expiration-time and expiration-scope

can be changed programmatically

33

Validation Caching

● Portlet should set ETAG property (validation
token) and expiration-time when rendering

● New render/resource requests will only be
called after expiration-time is reached

● New request will be sent the ETAG

● Portlet should examine it and determine if
cache is still good – if so, set a new
expiration-time and do not render

● Must set the ETAG, expiration time, and
caching scope before writing any output

34

JSR 286 Minor Changes

35

Window ID

● New PortletRequest.getWindowID() method
must return the Portlet Window ID

● Review from JSR 168:
– Portlet Deployment (not mentioned directly in

specification): portlet.xml file information

– Portlet Definition: Publish time information

– Portlet Entity: Subscribe time information

– Portlet Window: Login/Session time information

● Used for portlet-scoped session data

36

Namespacing

● getNamespace() method now available on all
Portlet Request classes (previously only on
RenderRequest)

● Provides a unique value for the current Portlet
Window

● Value may be used to prefix Javascript
functions / variables or other items within a
portal page that must be unique

● Will return the same value for the lifetime of
the Portlet Window

37

Lifecycle Phase Request Attribute

● LIFECYCLE_PHASE request attribute of the
PortletRequest interface determines current
phase:
– ACTION_PHASE = ActionRequest

– EVENT_PHASE = EventRequest

– RENDER_PHASE = RenderRequest

– RESOURCE_SERVING_PHASE = ResourceRequest

● Designed to let frameworks cast correctly

38

RENDER_HEADERS Sub-phase

● The Render Phase now has two sub-phases if
the renderHeaders runtime option is set true

● Should be used when setting headers,
cookies, the title, or next portlet modes

● Streaming portals will call render twice and
set RENDER_PART portlet request attribute as
follows:
– RENDER_HEADERS on the first call, so perform

appropriate header operations

– RENDER_MARKUP on the second call, so now render
the actual markup

39

Portlet Cookies

● Cookies can now be set on the
PortletResponse and retrieved on the
PortletRequest

● These cookies may be stored by the Portal
and may not actually reach the client

● Cookies set in the response of one phase will
be available in subsequent phases (e.g. a
cookie set in the action phase will be
available during the render phase)

40

Setting Markup Head Elements

● Use Response addProperty method with
MARKUP_HEAD_ELEMENT constant as property
name and an org.w3c.dom.Element value

● Provided DOM element should be added to
the markup <head> section of the response to
the client

● Support for this property is optional – verify
via the MARKUP_HEAD_ELEMENT_SUPPORT
property on the PortalContext

● For a Render Response, should be done in
RENDER_HEADERS sub-phase

41

Next Possible Portlet Modes

● The RenderResponse can now indicate the
next possible Portlet Modes and Window
States

● Portals should limit available navigation
controls accordingly

● To ensure this works in all portals, set them
during the RENDER_HEADERS subphase

42

Portlet Request Dispatcher

● PortletRequestDispatcher may now be called
from processAction() and processEvent(), as
well as render()

● All non-render lifecycle methods will not be
allowed to be write to any output stream

● PortletRequestDispatcher now has both an
include() and a forward() method

● Portlet Request Dispatchers must follow any
Servlet Filters set up

43

Portlet Resource Bundle

● Portlet Resource Bundle can now manage
more information:
– Portlet Info

● title, short-title, keywords
● display-name, description

– Display Names / Descriptions
● Public render parameters
● Custom portlet modes and window states
● Event definitions
● User attributes

44

Portlet Container Runtime Options

● Define additional runtime behavior in
portlet.xml

● Defined at portlet application level or the
portlet level

● Use <container-runtime-option> element
● Current Options:

– javax.portlet.escapeXml

– javax.portlet.renderHeaders

– javax.portlet.includedPortletSessionScope

– javax.portlet.actionScopedRequestAttributes

45

Portlet Tag Library

● New resourceURL tag
● Existing namespace tag required to match the

value of PortletResponse.getNamespace()
● New copyCurrentRenderParameters attribute

on Action and Render URLs (default: false)
● New escapeXML attribute on Action, Render, and

Resource URLs (default: true)
● New property tag for use in Action, Render, and

Resource URLs to set request properties
● defineObjects tag now includes all new

request/response objects and access to
PortletSession and PortletPreferences

46

Additional CSS Classes

● Now includes the Table style definitions from
WSRP 1.0

● Some additional Forms and Menus styles
have been added

● Note: Some names in the draft still overlap
and will need to be corrected before final
release

47

Resources

48

Resources

● Main JSR 286 Website
– http://jcp.org/en/jsr/detail?id=286

● WSRP 2.0 Specification
– http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec.html

● Implementations
– Pluto 2.0 (In Development)

● http://portals.apache.org/pluto/
– Jboss (Release Candidate)

● http://www.jboss.org/portletcontainer/
– OpenPortal (Release Candidate)

● https://portlet-container.dev.java.net/
– eXo (Release Candidate)

● http://www.exoplatform.com/

http://jcp.org/en/jsr/detail?id=286
http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec.html
http://portals.apache.org/pluto/
http://www.jboss.org/portletcontainer/
https://portlet-container.dev.java.net/
http://www.exoplatform.com/

49

Support in Spring Portlet MVC

● New annotations & parameters:
– @RenderMapping

● windowState
– @ActionMapping

● name (request parameter "javax.portlet.action")
– @EventMapping

● name (local part of the event name)
● qname (full event qname)

– @ResourceMapping
● Id

– All supporting the existing parameters for portlet
mode and request parameters

50

Spring Portlet MVC Roadmap

● Portlet 2.0 support planned for Spring 3.0
● No idea when it will be released

(the talk is sometime this summer, but you didn't
hear it from me)

● Some design discussion in JIRA:
– http://jira.springframework.org/browse/SPR-4259

http://jira.springframework.org/browse/SPR-4259

51

Questions & Answers

John A. Lewis
Chief Software Architect
Unicon, Inc.

jlewis@unicon.net
www.unicon.net

mailto:jlewis@unicon.net
http://www.unicon.net/

	Title: Portlet 2.0 Features
	Agenda
	Section: Portlet Specs & Features
	Portlet 1.0 / JSR 168 History
	Portlet 2.0 / JSR 286 History
	JSR 168 Feature Summary
	JSR 286 - Major Changes
	JSR 286 - Minor Changes
	JSR 286 - Unchanged
	Section: Portlet Events
	Events and the Portlet Lifecycle
	Portlet Request Diagram
	EventPortlet Interface
	Publishing Events
	Event Definitions
	Events and JAXB
	Section: Public Render Parameters
	Public Render Parameters
	Section: Resource Serving
	Resource Serving
	ResourceServingPortlet
	Resource URLs
	Cacheability of Resources
	Other Resource Information
	Section: Portlet Filters
	Portlet Filters
	Portlet Filter Interface
	Declaring Portlet Filters
	Wrapping Requests/Responses
	Section: Portlet Caching
	Caching
	Expiration Caching
	Validation Caching
	Section: JSR 286 Minor Changes
	Window ID
	Namespacing
	Lifecycle Phase Request Attribute
	RENDER_HEADERS Sub-phase
	Portlet Cookies
	Setting Markup Head Elements
	Next Possible Portlet Modes
	Portlet Request Dispatcher
	Portlet Resource Bundle
	Portlet Container Runtime Options
	Portlet Tag Library
	Additional CSS Classes
	Section: Resources
	Resources
	Support in Spring Portlet MVC
	Spring Portlet MVC Roadmap
	Questions & Answers

