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Special thanks to Cris Holdorph from Unicon 
for helping to prepare this material.
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Portlet Specs & Features
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Portlet 1.0 / JSR 168 History

– Java Community Process
http://www.jcp.org/en/jsr/detail?id=168

– Led by Sun and IBM

– Started: 29 January 2002

– Released: 27 October 2003

– Reference Implementation: Apache Pluto

– Interoperability between Portlets / Portals

– Set of APIs defining Portlets

– Linked to WSRP 1.0 Specification

http://www.jcp.org/en/jsr/detail?id=168
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Portlet 2.0 / JSR 286 History

– Java Community Process
http://jcp.org/en/jsr/detail?id=286

– Led by IBM
● Steven Hepper (sthepper@de.ibm.com)

– Started: 29 November 2005

– Final Approval Ballot: 3 March 2008 (Passed)

– Waiting for TCK and Reference Implementation 
(Pluto 2.0)

– Linked to WSRP 2.0 Specification

http://jcp.org/en/jsr/detail?id=286
mailto:sthepper@de.ibm.com
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JSR 168 Feature Summary

– Lifecycle (init, action, render, destroy)

– Portlet URLs (Render URL, Action URL)

– Portlet Mode (View, Edit, Help)

– Window States (Normal, Maximize, Minimize)

– Render Parameters

– Portlet Preferences

– Portlet Session

– Portlet Deployment Descriptor (portlet.xml)
● expiration-cache
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JSR 286 – Major Changes

● Portlet Events
● Public Render Parameters
● Resource Serving
● Portlet Filters
● Caching Changes
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JSR 286 – Minor Changes

● Window ID
● Namespacing
● Lifecycle Phase 

Request Attribute
● RENDER_HEADERS 

Sub-phase
● Portlet Cookies
● Setting Markup Head 

Elements
● Next Portlet Modes

● Portlet Tag Library 
Changes

● Additional CSS 
Classes

● Portlet Request 
Dispatcher Changes

● Portlet Resource 
Bundle Changes

● Portlet Container 
Runtime Options
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JSR 286 - Unchanged

● Portlet Modes
● Window States
● Portlet Preferences
● Portlet Security
● User Information
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Portlet Events
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Events and the Portlet Lifecycle

● New Lifecycle Phase: Event Processing
● For each overall portal page request:

– Action Phase – called on at most one portlet 
window

– Event Phase – called on as many portlet windows 
as necessary

– Render Phase – called on up to as many portlet 
windows that are displayed on current page

● Events may be generated during Action Phase 
or Event Phase – not during Render Phase
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Diagram from Java™ Portlet Specification, Version 2.0 Public Draft , Rev. 19
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EventPortlet Interface

● javax.portlet.EventPortlet Interface
– May be implemented by a Portlet

– Contains one method:
void processEvent(EventRequest, EventResponse)

– EventRequest object provides event payload and 
other typical portlet info (mode, window state, 
etc)

– processEvent is similar to processAction for 
copying renderParameters
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Publishing Events

● Events may be published using methods on 
ActionResponse or EventResponse
– setEvent or setEvents

– Multiple calls to setEvent and setEvents are 
allowed

● Event delivery and processing order
is not guaranteed
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Event Definitions

● Events must be defined in portlet.xml
● After event definition, each portlet must 

declare what events it will publish or receive
● Portal-defined events do not have to be 

defined in portlet.xml
● Event naming:

– Must use the W3C QName standard

– Receiving events can end with a * wildcard

– Can declare default-event-namespace in 
portlet.xml and just use local names
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Events and JAXB

● JAXB 2.0 must be used to define the Event 
Payload

● JAXB is necessary for interoperability with 
WSRP events

● Implementing event payload class must be 
Serializable and annotated with JAXB 
annotations
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Public Render Parameters
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Public Render Parameters

● May be visible to multiple Portlets & Webapps
● Managed in portlet.xml

– Defined in the <portlet-application>

– Declared in each <portlet> that wants it

● Name must follow the W3C Qname spec – 
can declare a default-name-space

● A portal can decide which public render 
parameters will be shared by which portlets
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Resource Serving



20

Resource Serving

● Portlets can create two types of Resource 
Links
– Direct Links (not new)
– Resource URL Links (new!)

● Direct Links
– More efficient
– Not guaranteed to go through Portal
– Will not have portal context available
– No portal access control

● Resource URL Links
– Will go through the ResourceServingPortlet 

interface
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ResourceServingPortlet

● ResourceServingPortlet Interface
void serveResource
(ResourceRequest, ResourceResponse)

● Portlet can produce content with
– ResourceResponseWriter

– OutputStream

– Delegate with a RequestDispatcher call

● Portal is not allowed to modify content
● Portlet should not use HTTP GET for state 

change use HTTP POST/PUT/DELETE instead
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Resource URLs

● Portlet creates a ResourceURL to itself with 
PortletResponse.createResourceURL()

● ResourceURL only valid if a Portlet 
implements ResourceServingPortlet

● Does not cause processAction to be invoked
● Cannot change Portlet Mode or Window State
● All current render parameters will be included
● New parameters set do not become render 

parameters
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Cacheability of Resources

● ResourceURL can control the “cacheability” of 
the resource via the setCacheability method:
– FULL – The most cacheable – URL does not need 

to contain state of the page, the current render 
parameters, portlet mode, or window state

– PORTLET – URL needs portlet state (render 
parameters, portlet mode, and window state), but 
does not need the state of the rest of the page

– PAGE – The least cacheable – URL needs 
complete state of page and portlet

● Cannot create URLs with more detail in 
Resource requests from URLs with less detail
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Other Resource Information

● ResourceRequest provides access to a mix of 
Portlet information and information unique to 
Resources:
– Portlet Mode, Window State, and Render 

Parameters of the requesting portlet are provided

– Full access to HTTP headers
(can set on response as well)

– HTTP Method of the request

– The Resource ID set on the Resource URL (if any)

– The ETAG for cache validation
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Portlet Filters
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Portlet Filters

● Modeled after Servlet Filters
● Modify request data by wrapping request
● Modify response data by wrapping response
● Intercept invocation of a portlet before and 

after it is called
● Filters may be chained
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Portlet Filter Interface

● Must implement javax.portlet.Filter interface
● Must provide a public no-arg constructor
● init() method will be called on all Filters 

before being called on any Portlets
● destroy() will be called if Filter is removed 

from service
● doFilter() method called if processAction(), 

processEvent(), render(), or serveResource() 
would be called on Filtered Portlet
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Declaring Portlet Filters

● Declared in portlet.xml in  <filter> element

● <filter-mapping> element must specify the 
applicable portlets

● Restrict to specific lifecycle methods using the 
<lifecycle> element in <filter-mapping>

● Order in portlet.xml matters for multiple 
filters of the same portlet

● Portlet containers are expected/allowed to 
cache the “filter chain”
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Wrapping Requests/Reponses

● New wrapper classes provided for all request 
and response objects for use with Filters:
– ActionRequestWrapper

ActionResponseWrapper

– EventRequestWrapper
EventResponseWrapper

– RenderRequestWrapper
RenderResponseWrapper

– ResourceRequestWrapper
ResourceResponseWrapper
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Portlet Caching
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Caching

● Two Types:
– Expiration Caching

● What existed before with some changes
– Validation Caching

● New for extension of expiration caching

● Caching is now applied to both the Render 
and Resource lifecycle phases
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Expiration Caching

● If no <expiration-cache> value is specified 
then portlet will be treated as always expired

● New <expiration-time> sub-element

– Previous time-in-seconds value goes here

● New <expiration-scope> sub element

– PUBLIC_SCOPE may be shared across users

– PRIVATE_SCOPE may NOT be shared (default)

● Action or Event request will expire cache
● expiration-time and expiration-scope 

can be changed programmatically
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Validation Caching

● Portlet should set ETAG property (validation 
token) and expiration-time when rendering

● New render/resource requests will only be 
called after expiration-time is reached

● New request will be sent the ETAG

● Portlet should examine it and determine if 
cache is still good – if so, set a new 
expiration-time and do not render

● Must set the ETAG, expiration time, and 
caching scope before writing any output
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JSR 286 Minor Changes
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Window ID

● New PortletRequest.getWindowID() method 
must return the Portlet Window ID

● Review from JSR 168:
– Portlet Deployment (not mentioned directly in 

specification): portlet.xml file information

– Portlet Definition: Publish time information

– Portlet Entity: Subscribe time information

– Portlet Window: Login/Session time information

● Used for portlet-scoped session data
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Namespacing

● getNamespace() method now available on all 
Portlet Request classes (previously only on 
RenderRequest)

● Provides a unique value for the current Portlet 
Window

● Value may be used to prefix Javascript 
functions / variables or other items within a 
portal page that must be unique

● Will return the same value for the lifetime of 
the Portlet Window
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Lifecycle Phase Request Attribute

● LIFECYCLE_PHASE request attribute of the 
PortletRequest interface determines current 
phase:
– ACTION_PHASE = ActionRequest

– EVENT_PHASE = EventRequest

– RENDER_PHASE = RenderRequest

– RESOURCE_SERVING_PHASE = ResourceRequest

● Designed to let frameworks cast correctly
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RENDER_HEADERS Sub-phase

● The Render Phase now has two sub-phases if 
the renderHeaders runtime option is set true

● Should be used when setting headers, 
cookies, the title, or next portlet modes

● Streaming portals will call render twice and 
set RENDER_PART portlet request attribute as 
follows:
– RENDER_HEADERS on the first call, so perform 

appropriate header operations

– RENDER_MARKUP on the second call, so now render 
the actual markup
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Portlet Cookies

● Cookies can now be set on the 
PortletResponse and retrieved on the 
PortletRequest

● These cookies may be stored by the Portal 
and may not actually reach the client

● Cookies set in the response of one phase will 
be available in subsequent phases (e.g. a 
cookie set in the action phase will be 
available during the render phase)
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Setting Markup Head Elements

● Use Response addProperty method with 
MARKUP_HEAD_ELEMENT constant as property 
name and an org.w3c.dom.Element value

● Provided DOM element should be added to 
the markup <head> section of the response to 
the client

● Support for this property is optional – verify 
via the MARKUP_HEAD_ELEMENT_SUPPORT 
property on the PortalContext

● For a Render Response, should be done in 
RENDER_HEADERS sub-phase
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Next Possible Portlet Modes

● The RenderResponse can now indicate the 
next possible Portlet Modes and Window 
States

● Portals should limit available navigation 
controls accordingly

● To ensure this works in all portals, set them 
during the RENDER_HEADERS subphase
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Portlet Request Dispatcher

● PortletRequestDispatcher may now be called 
from processAction() and processEvent(), as 
well as render()

● All non-render lifecycle methods will not be 
allowed to be write to any output stream

● PortletRequestDispatcher now has both an 
include() and a forward() method

● Portlet Request Dispatchers must follow any 
Servlet Filters set up
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Portlet Resource Bundle

● Portlet Resource Bundle can now manage 
more information:
– Portlet Info

● title, short-title, keywords
● display-name, description

– Display Names / Descriptions
● Public render parameters
● Custom portlet modes and window states
● Event definitions
● User attributes
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Portlet Container Runtime Options

● Define additional runtime behavior in 
portlet.xml

● Defined at portlet application level or the 
portlet level

● Use <container-runtime-option> element
● Current Options:

– javax.portlet.escapeXml

– javax.portlet.renderHeaders

– javax.portlet.includedPortletSessionScope

– javax.portlet.actionScopedRequestAttributes
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Portlet Tag Library

● New resourceURL tag
● Existing namespace tag required to match the 

value of PortletResponse.getNamespace()
● New copyCurrentRenderParameters attribute 

on Action and Render URLs (default: false)
● New escapeXML attribute on Action, Render, and 

Resource URLs (default: true)
● New property tag for use in Action, Render, and 

Resource URLs to set request properties
● defineObjects tag now includes all new 

request/response objects and access to 
PortletSession and PortletPreferences
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Additional CSS Classes

● Now includes the Table style definitions from 
WSRP 1.0

● Some additional Forms and Menus styles 
have been added

● Note: Some names in the draft still overlap 
and will need to be corrected before final 
release
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Resources
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Resources

● Main JSR 286 Website
– http://jcp.org/en/jsr/detail?id=286

● WSRP 2.0 Specification
– http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec.html

● Implementations
– Pluto 2.0 (In Development)

● http://portals.apache.org/pluto/
– Jboss (Release Candidate)

● http://www.jboss.org/portletcontainer/
– OpenPortal (Release Candidate)

● https://portlet-container.dev.java.net/
– eXo (Release Candidate)

● http://www.exoplatform.com/

http://jcp.org/en/jsr/detail?id=286
http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec.html
http://portals.apache.org/pluto/
http://www.jboss.org/portletcontainer/
https://portlet-container.dev.java.net/
http://www.exoplatform.com/
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Support in Spring Portlet MVC

● New annotations & parameters:
– @RenderMapping

● windowState
– @ActionMapping

● name (request parameter "javax.portlet.action")
– @EventMapping

● name (local part of the event name)
● qname (full event qname)

– @ResourceMapping
● Id

– All supporting the existing parameters for portlet 
mode and request parameters
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Spring Portlet MVC Roadmap

● Portlet 2.0 support planned for Spring 3.0
● No idea when it will be released

(the talk is sometime this summer, but you didn't 
hear it from me)

● Some design discussion in JIRA:
– http://jira.springframework.org/browse/SPR-4259

http://jira.springframework.org/browse/SPR-4259
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Questions & Answers

John A. Lewis
Chief Software Architect
Unicon, Inc.

jlewis@unicon.net
www.unicon.net

mailto:jlewis@unicon.net
http://www.unicon.net/
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