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uPortal Deployment at U of I



Problem:  Multiple Campuses, Multiple Environments

• U of I faced a challenging deployment 
landscape

• 3 campuses

• 2 version control systems

– SVN for source

– CVS for deployed environment

• 4 environments

• many nodes

Presenter
Presentation Notes
CVS used for deployment for the same reasons as using a version control system for source 
 Environment rollbacks are relatively easy
 Previous configurations can be recalled




Solution 1: Ant

• Benefit: Ubiquity

– you have it already

– tasks make it easy (e.g. copy)

• Drawback: Scalability

– change environment == change bulid process

Presenter
Presentation Notes
Adding or removing a node means editing build.xml for example (ant has no iterators)




Solution 2: Scripting

• Benefit: Flexibility

– parameterize vs. modify

– language features (python, groovy)

• Drawback: Scalability (again)

– too many parameters

– too much "plumbing code“

– usability (who on my team can pick this up 
quickly?)

Presenter
Presentation Notes
Python’s XML support is excellent, Groovy has the Slurper/Builder (again excellent)

Parameterizing scripts (or anything) creates usability and supportability issue

I know scripting languages, but my team does not and I eventually do not want to own this process




The Cernunnos Project

Software Solved



Cernunnos at a Glance

• Project Home Page:
http://cernunnos.googlecode.com/

• Discussion Group:
http://groups.google.com/group/cernunnos-discussion/

• Manual:
http://cernunnos.googlecode.com/svn/manual/index.html

• Quick Facts:
– 12k lines of source (code, comments, blanks)

– 7 project members

– 294 commits beginning 2007/02/15

http://cernunnos.googlecode.com/
http://groups.google.com/group/cernunnos-discussion/
http://cernunnos.googlecode.com/svn/manual/index.html


What Is It?

• Cernunnos is hard to describe for the same 
reason it's interesting:  there's nothing else 
like it

• I can't tell you what it is in a sound byte

• But it would go something like this:

“Cernunnos is a form factor for code components 
designed to overcome the Problem of Implied 
Codemass.”



WTF?

• This description begs the question:
“What is ‘Implied Codemass’  and why should I avoid it?”

• The reasons may sound "too good to be true“
– You will do more in less time

– You will produce higher quality deliverables

– Your deliverables will get better with age (like wine)

– You will learn a lot of cool things

– You will teach others the cool things you know

– You can turn in the same work again and again

– You can turn in other people's work too

– You can take it all with you to your next assignment



Implied Codemass

• Let's agree the codemass of a solution is the 
sum of all custom code

• Implied codemass is the portion of a solution that 
you're forced to write by architectural choices

• The real bulk, footprint, or mass of an individual 
choice -- whether you write it or download it --
includes the burden it places on components that 
interact with it

innate mass + implied mass = total mass



Why Implied Codemass?

• Industry-normal development practices lead 
to software systems that look like jigsaw 
puzzles

• Without pre-arranged guidelines for shape, 
components grow organically into shapes that 
reflect their purpose

• This process leads to systems made up of 
components that can only be combined in 
one way (like a jigsaw puzzle)



Example 1:  Connect to and query JDBC

Connection conn = null;
PreparedStatement pstmt = null;
try {

Class.forName("my.sql.Driver");
conn = DriverManager.getConnection(url, user, passwd);
pstmt = conn.prepareStatement("SELECT * FROM up_user");
ResultSet rs = pstmt.executeQuery();
/* do something useful with the results */

}
catch (ClassNotFoundException cnfe) { /* do something... */ }
catch (SQLException sqle) { /* do something... */ }
finally {

pstmt.close();
conn.close();

}



Example 2:  Connect to and query LDAP

Hashtable env = new Hashtable(11);
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put(Context.PROVIDER_URL, "ldap://localhost:389/o=JNDITutorial");
env.put(Context.SECURITY_AUTHENTICATION, "simple");
env.put(Context.SECURITY_PRINCIPAL, 

"cn=S. User, ou=NewHires, o=JNDITutorial");
env.put(Context.SECURITY_CREDENTIALS, "mysecret");

try {

DirContext ctx = new InitialDirContext(env);
NamingEnumeration<SearchResult> rslt = ctx.search("", 

"(objectclass=person)", null);
/* do something useful with the results */

} catch (NamingException e) { /* do something... */ }
finally {

ctx.close();
}



Hypothetical Sequence Diagram



Implied Codemass (Cont.)

• Practices like these lead to lots of Implied 
Codemass

• Sometimes this extra bulk is overlooked

• In other cases it’s accepted without scrutiny 
because there's no perceived alternative

• In either case, the jigsaw puzzle paradim 
continues



Hidden Bulk



LEGOLAND®

“At LEGOLAND® everyone in the family becomes a hero.”

• Lego bricks are similar to puzzle pieces in many 
ways:
– Intended for entertainment

– Appeal to similar ages

– Available in similar sizes and quantities

– You combine them to make something bigger

• There's one essential difference:
– with Lego bricks, the set of possible combinations is 

open-ended



GOAL:  Combine A & B



Integration Paradigms (Cont.)

• The jigsaw puzzle paradigm requires the 
incremental mass of C

• The Lego Brick paradigm requires no 
incremental mass



Cernunnos Is Like LEGOs

• With Cernunnos, you don't have to make it 
possible for components to combine;  you 
only have to tell them to do so

• When you introduce a new component to 
Cernunnos, it's instantly capable of combining 
with every other component -- past, present, 
and future



Cernunnos Example

>crn find-entries-in-jars.crn proj\lib SAX

<!-- Find all JAR files in $1… -->
<file-iterator dir="${$1}" includes="**/*.jar">

<!-- Print out each JAR name… -->
<echo-ln>${Attributes.LOCATION}:</echo-ln>

<!-- Print out entries that match $2… -->
<archive-iterator>

<with-attribute key="location" value="${Attributes.LOCATION}">
<if test="${groovy(location.contains('${$2}'))}">
<echo-ln prefix="&#009;">${location}</echo-ln>

</if>
</with-attribute>

</archive-iterator>

<echo-ln/>
</file-iterator>



Cernunnos Example (Cont.)

INFO:
**************************************************
** Invoking ScriptRunner.run(Task, TaskRequest)
** TaskRequest contains 3 elements
**   - $1=..\..\cernunnos-cmd-tool\lib
**   - Attributes.ORIGIN=file:/C:/HOME/find-entries-in-jars.crn
**   - $2=SAX
**************************************************

activation-1.1.jar:

commons-logging-1.1.jar:

commons-pool-1.2.jar:

jaxen-1.1.1.jar:
org/jaxen/saxpath/SAXPathEventSource.class
org/jaxen/saxpath/SAXPathException.class

jdom-1.0.jar:
org/jdom/input/SAXBuilder.class
org/jdom/input/SAXHandler.class
org/jdom/output/SAXOutputter.class

…



Cernunnos Manual



Do One Thing Well

• Cernunnos aims to make software less costly 
by taking on Implied Codemass

• Leave everything else to others

• Put good code in contact with other good 
code, get out of the way



Other Good Code

JavaMail

NekoHTML

Spring LDAP



Deployment Solved & Looking Ahead



Reconsidering Solution Design

• XML map of environment

– edit the xml file, not the script

– need a way to process the XML...

• Scripting languages: too much XML 
"plumbing code"

Presenter
Presentation Notes
Benefit to using an input document over parameters is it is declariative and self-documenting

Able to represent our environment as it was intended to be.

Drawback is programming it introduces plumbing code; parsing the document can be error-prone at first
- Groovy/Python alleviate this somewhat, but again think of your teammates and their skillset




Solution 3: Cernunnos!

• Benefit: Scalability (at last!!!)

– no "plumbing code“

– XPath/node-iterator reads the XML map

• Benefit: Declarative XML

– easy to pick up

– develop useful applications quickly



deployment.xml

• Defines environments, applications, and app-servers
<deploy>

<Environments>
<Environment name="Development">

<!-- The base directory for uPortal and portlets for each campus or machine type -->
<Applications>

<Application name="mydevuic"/>
<Application name="axisdevuis"/>

</Applications>

<!-- The CATALINA_BASE directory for each cluster -> node -->
<AppServers>

<cluster name="mydevillinois">
<config>

<port type="SERVER">8111</port>
<port type="HTTP_1_1">8112</port>
<port type="AJP">8113</port>

</config>
<node>mydevillinois1_01</node>
<node>mydevillinois2_01</node>

</cluster>
</AppServers>

</Environment>

[...]

</Environments>
</deploy>



crn-deploy.xml

• Deploys a portlet application to the local directory of the 
deployable CVS module

<with-attribute key="DEPLOYMENT_XML" value="${file(deployment.xml)}">

[...]    

<with-attribute key="JAR_FILE" value="${file(${req($1)})}">
<with-attribute key="APP_NAME" value="${jexl(JAR_FILE.getName().replace('.war',''))}">

<!-- Deploy the portlet app with the specified environment and cluster -->
<if test="${jexl(APP_NAME.endsWith('-pac'))}">

<node-iterator source="${doc(deployment.xml)}" 
xpath="//Environment[@name = '${req($3)}']/Applications/Application[@name = '${req($4)}']">

<with-attribute key="$2" 
value="${req($2)}/${req($3)}/${valueOf(name(..))}/${valueOf(./@name)}">

<crn location="deploy-portlet-app.xml"/>
</with-attribute>

</node-iterator>
</if>

[...]

</with-attribute>
</with-attribute>

</with-attribute>



Deployment Solved

• Cernunnos gave us what we were looking for

– Consistency

– Dependability

– Confidence

• Looking ahead

– additional deployment automation

– subscriber services

– uPortal data transfer 

Presenter
Presentation Notes
Also looking at how we could turn crn in to a development tool for our non-java portal partners (lego-like nature will be a benefit for our users)
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Drew Wills
drew@unicon.net
http://www.unicon.net/blog/19/
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