
Managing Diverse & Complex
uPortal Deployments

with Cernunnos

Andy Gherna & Drew Wills
JA-SIG Spring Conference, April 28, 2008

© Copyright Unicon, Inc., 2006. This work is the intellectual property of Unicon, Inc. Permission is granted for this material to be shared for
non-commercial, educational purposes, provided that this copyright statement appears on the reproduced materials and notice is given that
the copying is by permission of Unicon, Inc. To disseminate otherwise or to republish requires written permission from Unicon, Inc.

Presenters

• Andy Gherna
– University of Illinois at Urbana-Champaign

– Worked with uPortal and portlets for 3 years

– uPortal committer & Cernunnos committer

• Drew Wills
– Unicon employee since 2000

– Contributed to several uPortal implementations
• California Polytechnic State University "Cal Poly“

• California State University, Chico

• University of Colorado System

• Yale University

• Johns Hopkins University

– Launched Cernunnos February 2007

1. uPortal Deployment at U of I

2. The Cernunnos Project

3. Deployment Solved & Looking Ahead

uPortal Deployment with Cernunnos

uPortal Deployment at U of I

Problem: Multiple Campuses, Multiple Environments

• U of I faced a challenging deployment
landscape

• 3 campuses

• 2 version control systems

– SVN for source

– CVS for deployed environment

• 4 environments

• many nodes

Presenter
Presentation Notes
CVS used for deployment for the same reasons as using a version control system for source
 Environment rollbacks are relatively easy
 Previous configurations can be recalled

Solution 1: Ant

• Benefit: Ubiquity

– you have it already

– tasks make it easy (e.g. copy)

• Drawback: Scalability

– change environment == change bulid process

Presenter
Presentation Notes
Adding or removing a node means editing build.xml for example (ant has no iterators)

Solution 2: Scripting

• Benefit: Flexibility

– parameterize vs. modify

– language features (python, groovy)

• Drawback: Scalability (again)

– too many parameters

– too much "plumbing code“

– usability (who on my team can pick this up
quickly?)

Presenter
Presentation Notes
Python’s XML support is excellent, Groovy has the Slurper/Builder (again excellent)

Parameterizing scripts (or anything) creates usability and supportability issue

I know scripting languages, but my team does not and I eventually do not want to own this process

The Cernunnos Project

Software Solved

Cernunnos at a Glance

• Project Home Page:
http://cernunnos.googlecode.com/

• Discussion Group:
http://groups.google.com/group/cernunnos-discussion/

• Manual:
http://cernunnos.googlecode.com/svn/manual/index.html

• Quick Facts:
– 12k lines of source (code, comments, blanks)

– 7 project members

– 294 commits beginning 2007/02/15

http://cernunnos.googlecode.com/
http://groups.google.com/group/cernunnos-discussion/
http://cernunnos.googlecode.com/svn/manual/index.html

What Is It?

• Cernunnos is hard to describe for the same
reason it's interesting: there's nothing else
like it

• I can't tell you what it is in a sound byte

• But it would go something like this:

“Cernunnos is a form factor for code components
designed to overcome the Problem of Implied
Codemass.”

WTF?

• This description begs the question:
“What is ‘Implied Codemass’ and why should I avoid it?”

• The reasons may sound "too good to be true“
– You will do more in less time

– You will produce higher quality deliverables

– Your deliverables will get better with age (like wine)

– You will learn a lot of cool things

– You will teach others the cool things you know

– You can turn in the same work again and again

– You can turn in other people's work too

– You can take it all with you to your next assignment

Implied Codemass

• Let's agree the codemass of a solution is the
sum of all custom code

• Implied codemass is the portion of a solution that
you're forced to write by architectural choices

• The real bulk, footprint, or mass of an individual
choice -- whether you write it or download it --
includes the burden it places on components that
interact with it

innate mass + implied mass = total mass

Why Implied Codemass?

• Industry-normal development practices lead
to software systems that look like jigsaw
puzzles

• Without pre-arranged guidelines for shape,
components grow organically into shapes that
reflect their purpose

• This process leads to systems made up of
components that can only be combined in
one way (like a jigsaw puzzle)

Example 1: Connect to and query JDBC

Connection conn = null;
PreparedStatement pstmt = null;
try {

Class.forName("my.sql.Driver");
conn = DriverManager.getConnection(url, user, passwd);
pstmt = conn.prepareStatement("SELECT * FROM up_user");
ResultSet rs = pstmt.executeQuery();
/* do something useful with the results */

}
catch (ClassNotFoundException cnfe) { /* do something... */ }
catch (SQLException sqle) { /* do something... */ }
finally {

pstmt.close();
conn.close();

}

Example 2: Connect to and query LDAP

Hashtable env = new Hashtable(11);
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put(Context.PROVIDER_URL, "ldap://localhost:389/o=JNDITutorial");
env.put(Context.SECURITY_AUTHENTICATION, "simple");
env.put(Context.SECURITY_PRINCIPAL,

"cn=S. User, ou=NewHires, o=JNDITutorial");
env.put(Context.SECURITY_CREDENTIALS, "mysecret");

try {

DirContext ctx = new InitialDirContext(env);
NamingEnumeration<SearchResult> rslt = ctx.search("",

"(objectclass=person)", null);
/* do something useful with the results */

} catch (NamingException e) { /* do something... */ }
finally {

ctx.close();
}

Hypothetical Sequence Diagram

Implied Codemass (Cont.)

• Practices like these lead to lots of Implied
Codemass

• Sometimes this extra bulk is overlooked

• In other cases it’s accepted without scrutiny
because there's no perceived alternative

• In either case, the jigsaw puzzle paradim
continues

Hidden Bulk

LEGOLAND®

“At LEGOLAND® everyone in the family becomes a hero.”

• Lego bricks are similar to puzzle pieces in many
ways:
– Intended for entertainment

– Appeal to similar ages

– Available in similar sizes and quantities

– You combine them to make something bigger

• There's one essential difference:
– with Lego bricks, the set of possible combinations is

open-ended

GOAL: Combine A & B

Integration Paradigms (Cont.)

• The jigsaw puzzle paradigm requires the
incremental mass of C

• The Lego Brick paradigm requires no
incremental mass

Cernunnos Is Like LEGOs

• With Cernunnos, you don't have to make it
possible for components to combine; you
only have to tell them to do so

• When you introduce a new component to
Cernunnos, it's instantly capable of combining
with every other component -- past, present,
and future

Cernunnos Example

>crn find-entries-in-jars.crn proj\lib SAX

<!-- Find all JAR files in $1… -->
<file-iterator dir="${$1}" includes="**/*.jar">

<!-- Print out each JAR name… -->
<echo-ln>${Attributes.LOCATION}:</echo-ln>

<!-- Print out entries that match $2… -->
<archive-iterator>

<with-attribute key="location" value="${Attributes.LOCATION}">
<if test="${groovy(location.contains('${$2}'))}">
<echo-ln prefix="	">${location}</echo-ln>

</if>
</with-attribute>

</archive-iterator>

<echo-ln/>
</file-iterator>

Cernunnos Example (Cont.)

INFO:
**
** Invoking ScriptRunner.run(Task, TaskRequest)
** TaskRequest contains 3 elements
** - $1=..\..\cernunnos-cmd-tool\lib
** - Attributes.ORIGIN=file:/C:/HOME/find-entries-in-jars.crn
** - $2=SAX
**

activation-1.1.jar:

commons-logging-1.1.jar:

commons-pool-1.2.jar:

jaxen-1.1.1.jar:
org/jaxen/saxpath/SAXPathEventSource.class
org/jaxen/saxpath/SAXPathException.class

jdom-1.0.jar:
org/jdom/input/SAXBuilder.class
org/jdom/input/SAXHandler.class
org/jdom/output/SAXOutputter.class

…

Cernunnos Manual

Do One Thing Well

• Cernunnos aims to make software less costly
by taking on Implied Codemass

• Leave everything else to others

• Put good code in contact with other good
code, get out of the way

Other Good Code

JavaMail

NekoHTML

Spring LDAP

Deployment Solved & Looking Ahead

Reconsidering Solution Design

• XML map of environment

– edit the xml file, not the script

– need a way to process the XML...

• Scripting languages: too much XML
"plumbing code"

Presenter
Presentation Notes
Benefit to using an input document over parameters is it is declariative and self-documenting

Able to represent our environment as it was intended to be.

Drawback is programming it introduces plumbing code; parsing the document can be error-prone at first
- Groovy/Python alleviate this somewhat, but again think of your teammates and their skillset

Solution 3: Cernunnos!

• Benefit: Scalability (at last!!!)

– no "plumbing code“

– XPath/node-iterator reads the XML map

• Benefit: Declarative XML

– easy to pick up

– develop useful applications quickly

deployment.xml

• Defines environments, applications, and app-servers
<deploy>

<Environments>
<Environment name="Development">

<!-- The base directory for uPortal and portlets for each campus or machine type -->
<Applications>

<Application name="mydevuic"/>
<Application name="axisdevuis"/>

</Applications>

<!-- The CATALINA_BASE directory for each cluster -> node -->
<AppServers>

<cluster name="mydevillinois">
<config>

<port type="SERVER">8111</port>
<port type="HTTP_1_1">8112</port>
<port type="AJP">8113</port>

</config>
<node>mydevillinois1_01</node>
<node>mydevillinois2_01</node>

</cluster>
</AppServers>

</Environment>

[...]

</Environments>
</deploy>

crn-deploy.xml

• Deploys a portlet application to the local directory of the
deployable CVS module

<with-attribute key="DEPLOYMENT_XML" value="${file(deployment.xml)}">

[...]

<with-attribute key="JAR_FILE" value="${file(${req($1)})}">
<with-attribute key="APP_NAME" value="${jexl(JAR_FILE.getName().replace('.war',''))}">

<!-- Deploy the portlet app with the specified environment and cluster -->
<if test="${jexl(APP_NAME.endsWith('-pac'))}">

<node-iterator source="${doc(deployment.xml)}"
xpath="//Environment[@name = '${req($3)}']/Applications/Application[@name = '${req($4)}']">

<with-attribute key="$2"
value="${req($2)}/${req($3)}/${valueOf(name(..))}/${valueOf(./@name)}">

<crn location="deploy-portlet-app.xml"/>
</with-attribute>

</node-iterator>
</if>

[...]

</with-attribute>
</with-attribute>

</with-attribute>

Deployment Solved

• Cernunnos gave us what we were looking for

– Consistency

– Dependability

– Confidence

• Looking ahead

– additional deployment automation

– subscriber services

– uPortal data transfer

Presenter
Presentation Notes
Also looking at how we could turn crn in to a development tool for our non-java portal partners (lego-like nature will be a benefit for our users)

Andy Gherna
agherna@uiuc.edu
http://www.uiuc.edu/

Questions?

Drew Wills
drew@unicon.net
http://www.unicon.net/blog/19/

mailto:agherna@uiuc.edu
http://www.website.com/
mailto:drew@unicon.net
http://www.unicon.net/blog/19

	Managing Diverse & Complex uPortal Deployments �with Cernunnos
	Presenters
	Slide Number 3
	uPortal Deployment at U of I
	Problem: Multiple Campuses, Multiple Environments
	Solution 1: Ant
	Solution 2: Scripting
	The Cernunnos Project
	Cernunnos at a Glance
	What Is It?
	WTF?
	Implied Codemass
	Why Implied Codemass?
	Example 1: Connect to and query JDBC
	Example 2: Connect to and query LDAP
	Hypothetical Sequence Diagram
	Implied Codemass (Cont.)
	Hidden Bulk
	LEGOLAND®
	GOAL: Combine A & B
	Integration Paradigms (Cont.)
	Cernunnos Is Like LEGOs
	Cernunnos Example
	Cernunnos Example (Cont.)
	Cernunnos Manual
	Do One Thing Well
	Other Good Code
	Deployment Solved & Looking Ahead
	Reconsidering Solution Design
	Solution 3: Cernunnos!
	deployment.xml
	crn-deploy.xml
	Deployment Solved
	Questions?

