
Introduction to
Spring Web Flow

Andrew Petro
Software Developer

Unicon, Inc.

Jasig 2011
Westminster, CO

23 May 2011

© Copyright Unicon, Inc., 2011. Some rights reserved. This work is licensed under a
Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/

http://creativecommons.org/licenses/by-nc-sa/3.0/us/

 2

Spring Web Flow
1. How Spring Web Flow Fits
2. What's a Flow?
3. Spring Web Flow States
4. Forms

 3

Why is Spring Web Flow important?

● uPortal 4 uses Spring Web Flow
● CAS uses Spring Web Flow
● Spring Web Flow as viable Portlet

development framework

● Quickly build and maintain wizard / flow Web
experiences with panache
– Forms, processes, registrations
– This is bread and butter self-service IT

 4

How Spring Web Flow Fits

 5

Sits atop Spring Framework / MVC

● Spring Web Flow works with the rest of the
Spring Framework and Spring WebMVC

Diagram credit: Spring Web Flow documentation

 6

Purpose of Spring Web Flow

● Spring Web Flow is good at building flows

● Which just begs the question, really.

● Let me get at this another way...

 7

Aside: Spring Framework

● Dependency Injection / Inversion of Control
● Utilities, templates, helpers
● For easing all aspects of Java development

– Especially Java Web development

 8

The Hollywood Principle

Image credit http://www.flickr.com/photos/loop_oh/4337804209/ CC-BY-ND

http://www.flickr.com/photos/loop_oh/4337804209/

 9

Don't Call Us, We'll Call You

 10

Dependency Injection

● Write POJOs. JavaBeans.
● Spring wires together using XML or

Annotations or Autowiring or …
– Stop calling static factories.

● Code becomes more reusable, more flexibly
configurable, less repetitive, ...

 11

Editing Portlet Publications in
uPortal 4 RC1

An example of a flow

 12

Portlet Management

 13

Select Portlet Type

 14

Set basic portlet info

 15

Portlet Parameters

 16

Select Categories

 17

Select Users and Groups

 18

What's a flow anyway?

 19

What's a flow?

● A flow is a multi-step experience
● More than one request in making up a logical

whole

 20

A flow - what

● Has a beginning (state) and an end (state)
● Has zero or more intermediary states
● Has transitions between these states
● Has its own scope

– Can conveniently remember state between these
steps until the flow completes and your application
is ready to process the whole result

 21

Flows - why

● Re-use multi-step processes
● Revisit steps in flow

– Constrained by allowable state transitions
– Stateful!
– Flow-scoped state (might) make your application

cleaner (not having to model and remember at the
persistence/domain layer incomplete state)

 22

Re-use subflows

 23

Revisit steps in flow

 24

 25

States and Transitions

Views, Decisions, Actions, and Subflows

 26

View States

<view-state id=”viewLoginForm” />

● Renders a view.
● By convention, a view with the same name as

the id. So, “viewLoginForm.jsp”, e.g.

 27

Transitions from a View

<view-state id=”someView”>
 <transition on=”submit” to=”handleSubmit”/>
 <transition on=”cancel” to=”mainMenu” />
</view-state>

<input type=”submit” name=”_eventId_submit”
value=”Submit”/>
<input type=”submit” name=”_eventId_cancel”
value=”Cancel”/>

Cancel

 28

Decision States

<decision-state id=”warn”>
 <if test=”flowScope.warnCookieValue”
then=”showWarningView” else=”redirect” />
</decision-state>

● Boolean decision about what state is next

 29

Action States

<action-state id=”generateServiceTicket”>
 <evaluate expression=”generateServiceTicketAction”/>
 <transition on=”success” to=”warn”/>
 <transition on=”error” to=”viewLoginForm”/>
</action-state>

 30

Subflow States

<subflow-state id="chooseGroup" subflow="entity-
selector">
 <input name="selectedGroups"
value="portlet.groups"/>
 <output name="selectedGroups"
value="portlet.groups"/>

 <transition on="back" to="chooseCategory"/>
 <transition on="finish"
to="chooseGroupNextScreen"/>
</subflow-state>

 31

How it really works

● Start at a start-state
● Flow through zero or more action and

decision states until you get to another view
state. Render it.

● Repeat previous step.
● Eventually exit the flow.

 32

Ending with a view

<end-state id=”viewServiceErrorView” />

 33

Ending with a redirect

<end-state id=”redirectView”
 view=”externalRedirect:${requestScope.response.url}”
/>

 34

Ending with return from subflow

<end-state id="finish">
 <output name="selectedGroups"

value="flowScope.groups"/>
 </end-state>

 35

Setting variables and
invoking Java

between and within states

 36

Expression language

<evaluate
expression=”authenticationViaFormAction.submit(flowRequ
estContext, flowScope.credentials, messageContext)” />

 37

Storing result from expression

<evaluate
expression=”flowScope.service.getResponse(requestScope.
serviceTicketId)” result-
type=”org.jasig.cas.authentication.principal.Response”
result=”requestScope.response” />

 38

Where can I insert expressions?

● On flow start
● On state entry
● On view render
● On transition execution
● On state exit
● On flow end

 39

Forms

 40

Form Objects

● Form objects are POJOs
● JavaBean properties

public String getFname() {
return fname;

}

public void setFname(String name) {
fname = name;

}
...

 41

Binding forms to model

 <view-state id="chooseType" model="portlet">
 <transition on="next" to="afterChooseType" />
 <transition on="cancel" to="cancelEditScreen"
bind="false"/>
 </view-state>

Model
Form fields bind to JavaBean properties of the
model Java object.

 42

Binding

● All properties bind by default
● Bindings can be explicitly declared
● You can also use a custom binder

 43

Binding forms selectively to model

 <view-state id="lifecycle" model="portlet">
 <binder>
 <binding property="lifecycleState"/>
 <binding property="publishHour"/>

...
 </binder>
 ...
 </view-state>

Binder
Only bind the properties you intend to bind!

 44

Selectively bind on transitions

<view-state id=”viewLoginForm” view=”casLoginView”
model=”credentials”>
 <binder>
 <binding property=”username” />
 <binding property=”password” />
 </binder>
 <transition on=”submit” bind=”true” to=”handleSubmit”/>
 <transition on=”cancel” bind=”false” to=”whyAreYouHere”
 />

</view-state> Bind attribute on transition
You might not bother binding on a cancel, or you
might bind but not validate if partial progress
completing model.

 45

Select Portlet Type

 46

Next without required field

 47

But cancel doesn't require field

 48

Binding forms to model

 <view-state id="chooseType" model="portlet">
 <transition on="next" to="afterChooseType" />
 <transition on="cancel" to="cancelEditScreen"
bind="false"/>
 </view-state>

Model
Form fields bind to JavaBean properties of the
model Java object.

 49

Properties can be required

<view-state id=”viewLoginForm” view=”casLoginView”
model=”credentials”>
 <binder>
 <binding property=”username” required=”true” />
 <binding property=”password” required=”true”/>
 </binder>

</view-state>

 50

CAS login form

 51

Required fields

 52

Properties can be required

<view-state id=”viewLoginForm” view=”casLoginView”
model=”credentials”>
 <binder>
 <binding property=”username” required=”true” />
 <binding property=”password” required=”true”/>
 </binder>

</view-state>

 53

Validation

● Validator for model objects
● Or Validator for model-in-specific-state

● As in, you can program custom validators in
Java

 54

Selectively validate on transitions

<view-state id="basicInfo" model="portlet">
 <transition on="back" to="chooseType"
validate="false"/>
 <transition on="next" to="setParameters"/>
</view-state>

validate attribute on transition
You might bind but not validate if you want to
capture the user input but not prevent transition if
the input is invalid.

 55

Say I pick a portlet type

 56

I fill out this form, but...

 57

So I pick another portlet type

 58

And my form data is right there.

 59

Even though it's not valid

 60

Selectively validate on transitions

<view-state id="basicInfo" model="portlet">
 <transition on="back" to="chooseType"
validate="false"/>
 <transition on="next" to="setParameters"/>
</view-state>

validate attribute on transition
You might bind but not validate if you want to
capture the user input but not prevent transition if
the input is invalid.

 61

PortletDefinitionForm
public class PortletDefinitionForm implements

Serializable {

public String getFname() {
return fname;

}

public void setFname(String name) {
fname = name;

}
...

 62

PortletDefinitionFormValidator

public void validateBasicInfo(PortletDefinitionForm
def, MessageContext ctx) {

if (StringUtils.isEmpty(def.getFname())) {
ctx.addMessage(new

MessageBuilder().error().source("fName")
.code("fname.required").build());

} else if (!
FunctionalNameType.isValid(def.getFname())) {

ctx.addMessage(new
MessageBuilder().error().source("fName")

.code("fname.invalid").build());
}

}
...

 63

Validate${viewState}()

 <view-state id="basicInfo" model="portlet">
 <transition on="back" to="chooseType"
validate="false"/>
 <transition on="next" to="setParameters"/>
 </view-state>

public void validateBasicInfo(PortletDefinitionForm
def, MessageContext ctx) {

. . .
}

 64

Scopes

 65

Scopes

● Flash scope
● View Scope
● Flow Scope
● Conversation Scope

 66

Flash scope

● Cleared when a view is rendered

 67

View Scope

● Created when enter view-state
● Destroyed on exit view-state
● Useful for transient state for rendering the

view
– That you might need on processing the event fired

by the user interaction with the view
– Or that you need for re-rendering the view

 68

Flow Scope

● Created when enter flow
● Destroyed on exit flow
● Useful for transient state within the flow

 69

Conversation scope

● Persists across returns from subflows

 70

Conclusions

 71

Spring Web Flow in uPortal 4

● Many administrative portlets in uPortal 4
implemented using Spring Web Flow

 72

Spring Web Flow in CAS

 73

Spring Web Flow for Portlet Dev

● Works with Spring PortletMVC

 74

Spring Web Flow Web Development

● Quickly develop self-service web flows
● Update, maintain, and tweak these

applications with panache

 75

Contact Information

Andrew Petro
Software Developer
Unicon, Inc.

apetro@unicon.net
www.unicon.net/blog/apetro

http://www.unicon.net/

	Title Slide: Introduction to Spring Web Flow
	Agenda
	Why important?
	Section: How Spring Web Flow fits
	Sits atop Spring Framework
	Purpose of Spring Web Flow
	Spring Framework
	Hollywood Principle
	Don't call us, we'll call you
	Dependency injection
	Portlet Management in uP4 as Spring Web Flow Example
	Portlet management
	Select Portlet Type
	Set basic portlet info
	Set Portlet Parameters
	Slide 16
	Select users and groups
	Section title: What's a flow anyway?
	What's a flow
	What's a flow, again
	Why flows
	Re-use of subflows
	Revisiting steps in flows - forward, back, cancel
	Arbitrary transitions between states in flow
	States and Transitions
	View states
	Transitions from view
	Decision States
	Action States
	Subflow states
	How Spring Web Flow Really Works
	Ending flow with a view
	Ending flow with a redirect
	Returning from a subflow
	Section title: Setting variables and invoking Java
	expression language
	Storing result of an expression
	Where expressions are valid
	Section: Forms
	Form objects
	Binding forms to model
	Slide 42
	Binding properties selectively
	Selectively bind on transition
	Select portlet type example
	Portlet type is required
	Portlet type not required to cancel
	Selective binding on transitions
	Properties can be required
	Slide 50
	CAS required fields examples
	Recap required fields
	Validation
	Selectively validate on transitions
	Example: Pick Advanced CMS Portlet type
	Fill out some info, change mind about type
	Pick another type
	My hard work is still there
	Even though it won't validate
	Recap: selective validate on transitions
	A Form Object
	Form Validator
	Validator methods paired to view states
	Section title: Scopes
	Scopes
	Flash Scope
	View Scope
	Flow Scope
	Conversation Scope
	Section: Conlusions
	Spring Web Flow is used in uPortal 4
	Spring Web Flow in CAS
	Spring Web Flow for portlet development
	Spring Web Flow for Web Development
	Contact information

