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Spring Web Flow
1. How Spring Web Flow Fits
2. What's a Flow?
3. Spring Web Flow States
4. Forms
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Why is Spring Web Flow important?

● uPortal 4 uses Spring Web Flow
● CAS uses Spring Web Flow
● Spring Web Flow as viable Portlet 

development framework

● Quickly build and maintain wizard / flow Web 
experiences with panache
– Forms, processes, registrations
– This is bread and butter self-service IT
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How Spring Web Flow Fits
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Sits atop Spring Framework / MVC

● Spring Web Flow works with the rest of the 
Spring Framework and Spring WebMVC

Diagram credit: Spring Web Flow documentation
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Purpose of Spring Web Flow

● Spring Web Flow is good at building flows

● Which just begs the question, really.

● Let me get at this another way...
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Aside: Spring Framework

● Dependency Injection / Inversion of Control
● Utilities, templates, helpers
● For easing all aspects of Java development

– Especially Java Web development
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The Hollywood Principle

Image credit http://www.flickr.com/photos/loop_oh/4337804209/ CC-BY-ND

http://www.flickr.com/photos/loop_oh/4337804209/
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Don't Call Us, We'll Call You
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Dependency Injection

● Write POJOs.  JavaBeans.
● Spring wires together using XML or 

Annotations or Autowiring or …
– Stop calling static factories.

● Code becomes more reusable, more flexibly 
configurable, less repetitive, ...
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Editing Portlet Publications in 
uPortal 4 RC1

An example of a flow
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Portlet Management
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Select Portlet Type
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Set basic portlet info
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Portlet Parameters
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Select Categories
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Select Users and Groups
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What's a flow anyway?
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What's a flow?

● A flow is a multi-step experience
● More than one request in making up a logical 

whole
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A flow - what

● Has a beginning (state) and an end (state)
● Has zero or more intermediary states
● Has transitions between these states
● Has its own scope

– Can conveniently remember state between these 
steps until the flow completes and your application 
is ready to process the whole result
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Flows - why

● Re-use multi-step processes
● Revisit steps in flow

– Constrained by allowable state transitions
– Stateful! 
– Flow-scoped state (might) make your application 

cleaner (not having to model and remember at the 
persistence/domain layer incomplete state)
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Re-use subflows
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Revisit steps in flow
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States and Transitions

Views, Decisions, Actions, and Subflows
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View States

<view-state id=”viewLoginForm” />

● Renders a view.
● By convention, a view with the same name as 

the id.  So, “viewLoginForm.jsp”, e.g.
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Transitions from a View

<view-state id=”someView”>
  <transition on=”submit” to=”handleSubmit”/>
  <transition on=”cancel” to=”mainMenu” />
</view-state>

<input type=”submit” name=”_eventId_submit” 
value=”Submit”/>
<input type=”submit” name=”_eventId_cancel” 
value=”Cancel”/>

<a href=”${flowExecutionUrl}&_eventId=cancel”>Cancel</a>
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Decision States

<decision-state id=”warn”>
  <if test=”flowScope.warnCookieValue” 
then=”showWarningView” else=”redirect” />
</decision-state>

● Boolean decision about what state is next
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Action States

<action-state id=”generateServiceTicket”>
  <evaluate expression=”generateServiceTicketAction”/>
  <transition on=”success” to=”warn”/>
  <transition on=”error” to=”viewLoginForm”/>
</action-state>
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Subflow States

<subflow-state id="chooseGroup" subflow="entity-
selector">
    <input name="selectedGroups" 
value="portlet.groups"/>
    <output name="selectedGroups" 
value="portlet.groups"/>
        
    <transition on="back" to="chooseCategory"/>
    <transition on="finish" 
to="chooseGroupNextScreen"/>
</subflow-state>
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How it really works

● Start at a start-state
● Flow through zero or more action and 

decision states until you get to another view 
state. Render it.

● Repeat previous step.
● Eventually exit the flow.
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Ending with a view

<end-state id=”viewServiceErrorView” />
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Ending with a redirect

<end-state id=”redirectView” 
  view=”externalRedirect:${requestScope.response.url}”
/>
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Ending with return from subflow

<end-state id="finish">
    <output name="selectedGroups" 

value="flowScope.groups"/>
    </end-state>
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Setting variables and 
invoking Java

between and within states
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Expression language

<evaluate 
expression=”authenticationViaFormAction.submit(flowRequ
estContext, flowScope.credentials, messageContext)” />
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Storing result from expression

<evaluate 
expression=”flowScope.service.getResponse(requestScope.
serviceTicketId)” result-
type=”org.jasig.cas.authentication.principal.Response” 
result=”requestScope.response” />
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Where can I insert expressions?

● On flow start
● On state entry
● On view render
● On transition execution
● On state exit
● On flow end
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Forms
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Form Objects

● Form objects are POJOs
● JavaBean properties

public String getFname() {
return fname;

}

public void setFname(String name) {
fname = name;

}
...
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Binding forms to model

    <view-state id="chooseType" model="portlet">
        <transition on="next" to="afterChooseType" />
        <transition on="cancel" to="cancelEditScreen" 
bind="false"/>
    </view-state>

Model
Form fields bind to JavaBean properties of the 
model Java object.
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Binding

● All properties bind by default
● Bindings can be explicitly declared
● You can also use a custom binder
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Binding forms selectively to model

    <view-state id="lifecycle" model="portlet">
        <binder>
            <binding property="lifecycleState"/>
            <binding property="publishHour"/>

...
        </binder>
       ...
    </view-state>

Binder
Only bind the properties you intend to bind!
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Selectively bind on transitions

<view-state id=”viewLoginForm” view=”casLoginView” 
model=”credentials”>
  <binder>
    <binding property=”username” />
    <binding property=”password” />
  </binder>
  <transition on=”submit” bind=”true” to=”handleSubmit”/>
  <transition on=”cancel” bind=”false” to=”whyAreYouHere” 
  />

</view-state> Bind attribute on transition
You might not bother binding on a cancel, or you 
might bind but not validate if partial progress 
completing model.
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Select Portlet Type



  46

Next without required field
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But cancel doesn't require field
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Binding forms to model

    <view-state id="chooseType" model="portlet">
        <transition on="next" to="afterChooseType" />
        <transition on="cancel" to="cancelEditScreen" 
bind="false"/>
    </view-state>

Model
Form fields bind to JavaBean properties of the 
model Java object.
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Properties can be required

<view-state id=”viewLoginForm” view=”casLoginView” 
model=”credentials”>
  <binder>
    <binding property=”username” required=”true” />
    <binding property=”password” required=”true”/>
  </binder>

</view-state>
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CAS login form
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Required fields
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Properties can be required

<view-state id=”viewLoginForm” view=”casLoginView” 
model=”credentials”>
  <binder>
    <binding property=”username” required=”true” />
    <binding property=”password” required=”true”/>
  </binder>

</view-state>
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Validation

● Validator for model objects
● Or Validator for model-in-specific-state

● As in, you can program custom validators in 
Java



  54

Selectively validate on transitions

<view-state id="basicInfo" model="portlet">
    <transition on="back" to="chooseType" 
validate="false"/>
    <transition on="next" to="setParameters"/>
</view-state>

validate attribute on transition
You might bind but not validate if you want to 
capture the user input but not prevent transition if 
the input is invalid.
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Say I pick a portlet type
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I fill out this form, but...
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So I pick another portlet type
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And my form data is right there.
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Even though it's not valid
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Selectively validate on transitions

<view-state id="basicInfo" model="portlet">
    <transition on="back" to="chooseType" 
validate="false"/>
    <transition on="next" to="setParameters"/>
</view-state>

validate attribute on transition
You might bind but not validate if you want to 
capture the user input but not prevent transition if 
the input is invalid.
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PortletDefinitionForm
public class PortletDefinitionForm implements 

Serializable {

public String getFname() {
return fname;

}

public void setFname(String name) {
fname = name;

}
...
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PortletDefinitionFormValidator

public void validateBasicInfo(PortletDefinitionForm 
def, MessageContext ctx) {

if (StringUtils.isEmpty(def.getFname())) {
ctx.addMessage(new 

MessageBuilder().error().source("fName")
.code("fname.required").build());

} else if (!
FunctionalNameType.isValid(def.getFname())) {

ctx.addMessage(new 
MessageBuilder().error().source("fName")

.code("fname.invalid").build());
} 

}
...
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Validate${viewState}()

    <view-state id="basicInfo" model="portlet">
        <transition on="back" to="chooseType" 
validate="false"/>
        <transition on="next" to="setParameters"/>
    </view-state>

public void validateBasicInfo(PortletDefinitionForm 
def, MessageContext ctx) {

. . . 
}
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Scopes
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Scopes

● Flash scope
● View Scope
● Flow Scope
● Conversation Scope
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Flash scope

● Cleared when a view is rendered
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View Scope

● Created when enter view-state
● Destroyed on exit view-state
● Useful for transient state for rendering the 

view
– That you might need on processing the event fired 

by the user interaction with the view
– Or that you need for re-rendering the view
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Flow Scope

● Created when enter flow
● Destroyed on exit flow
● Useful for transient state within the flow
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Conversation scope

● Persists across returns from subflows
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Conclusions
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Spring Web Flow in uPortal 4

● Many administrative portlets in uPortal 4 
implemented using Spring Web Flow
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Spring Web Flow in CAS
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Spring Web Flow for Portlet Dev

● Works with Spring PortletMVC
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Spring Web Flow Web Development

● Quickly develop self-service web flows
● Update, maintain, and tweak these 

applications with panache
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